江苏省扬州市江都区五校2026届数学八上期末考试试题含解析_第1页
江苏省扬州市江都区五校2026届数学八上期末考试试题含解析_第2页
江苏省扬州市江都区五校2026届数学八上期末考试试题含解析_第3页
江苏省扬州市江都区五校2026届数学八上期末考试试题含解析_第4页
江苏省扬州市江都区五校2026届数学八上期末考试试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

江苏省扬州市江都区五校2026届数学八上期末考试试题题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.甲、乙两车从城出发匀速行驶至城.在整个行驶过程中,甲、乙两车离城的距离(千米)与甲车行驶的时间(小时)之间的函数关系如图所示.则下列结论:①两城相距千米;②乙车比甲车晚出发小时,却早到小时;③乙车出发后小时追上甲车;④当甲、乙两车相距千米时,其中正确的结论有()A.个 B.个 C.个 D.个2.甲、乙两个搬运工搬运某种货物,已知乙比甲每小时多搬运600kg,甲搬运5000kg所用的时间与乙搬运8000kg所用的时间相等,求甲、乙两人每小时分别搬运多少千克货物.设甲每小时搬运xkg货物,则可列方程为A. B. C. D.3.如下图,点是的中点,,,平分,下列结论:①②③④四个结论中成立的是()A.①②④ B.①②③ C.②③④ D.①③④4.直线y=kx+b经过第二、三、四象限,那么()A., B., C., D.,5.当分式的值为0时,字母x的取值应为()A.﹣1 B.1 C.﹣2 D.26.在中,无理数的个数是()A.2个 B.3个 C.4个 D.5个7.如图,AE∥DF,AE=DF,要使△EAC≌△FDB,需要添加下列选项中的()A.AB=CD B.EC=BF C.∠A=∠D D.AB=BC8.如图,直线a,b被直线c所截,下列条件不能判定直线a与b平行的是()A.∠1=∠3 B.∠2+∠4=180° C.∠1=∠4 D.∠3=∠49.已知三角形两边长分别为5cm和16cm,则下列线段中能作为该三角形第三边的是()A.24cm B.15cm C.11cm D.8cm10.叶绿体是植物进行光合作用的场所,叶绿体DNA最早发现于衣藻叶绿体,长约0.00005米.其中,0.00005用科学记数法表示为()A.0.5×10﹣4 B.5×10﹣4 C.5×10﹣5 D.50×10﹣3二、填空题(每小题3分,共24分)11.等腰三角形的一个角是70°,则它的底角是_____.12.已知一张三角形纸片如图甲,其中将纸片沿过点B的直线折叠,使点C落到AB边上的E点处,折痕为如图乙再将纸片沿过点E的直线折叠,点A恰好与点D重合,折痕为如图丙原三角形纸片ABC中,的大小为______13.如图,是的角平分线,,垂足为,且交线段于点,连结,若,设,则关于的函数表达式为_____________.14.函数中,自变量的取值范围是.15.计算:(x+a)(y-b)=______________________16.观察:①3、4、5,②5、12、13,③7、24、25,……,发现这些勾股数的“勾”都是奇数,且从3起就没断过.根据以上规律,请写出第8组勾股数:______.17.如图1,在探索“如何过直线外一点作已知直线的平行线”时,小颖利用两块完全相同的三角尺进行如下操作:如图2所示,(1)用第一块三角尺的一条边贴住直线l,第二块三角尺的一条边紧靠第一块三角尺;(2)将第二块三角尺沿第一块三角尺移动,使其另一边经过点A,沿这边作出直线AB,直线AB即为所求,则小颖的作图依据是________.18.为使一个四边形木架不变形我们会从中钉一根木条,这是利用了三角形的____________.三、解答题(共66分)19.(10分)如图1,在Rt△ABC中,∠C=90°,AC=BC,点D,E分别在边AC,BC上,CD=CE,连接AE,点F,H,G分别为DE,AE,AB的中点连接FH,HG(1)观察猜想图1中,线段FH与GH的数量关系是,位置关系是(2)探究证明:把△CDE绕点C顺时针方向旋转到图2的位置,连接AD,AE,BE判断△FHG的形状,并说明理由(3)拓展延伸:把△CDE绕点C在平面内自由旋转,若CD=4,AC=8,请直接写出△FHG面积的最大值20.(6分)(习题再现)课本中有这样一道题目:如图,在四边形中,分别是的中点,.求证:.(不用证明)(习题变式)(1)如图,在“习题再现”的条件下,延长与交于点,与交于点,求证:.(2)如图,在中,,点在上,,分别是的中点,连接并延长,交的延长线于点,连接,,求证:.21.(6分)分解因式:(1).(2).22.(8分)(1)(2)23.(8分)已知:点O到△ABC的两边AB,AC所在直线的距离相等,且OB=OC.(1)如图1,若点O在边BC上,OE⊥AB,OF⊥AC,垂足分别为E,F.求证:AB=AC;(2)如图,若点O在△ABC的内部,求证:AB=AC;(3)若点O在△ABC的外部,AB=AC成立吗?请画出图表示.24.(8分)如图,△ABC中,AB=AC,AD⊥BC,CE⊥AB,AE=CE.求证:(1)△AEF≌△CEB;(2)AF=2CD.25.(10分)如图AB=AC,CD⊥AB于D,BE⊥AC于E,BE与CD相交于点O.(1)求证AD=AE;(2)连接OA,BC,试判断直线OA,BC的关系并说明理由.26.(10分)如图,在中,是的平分线,于,于,试猜想与之间有什么关系?并证明你的猜想.

参考答案一、选择题(每小题3分,共30分)1、B【分析】观察图象可判断①②,由图象所给数据可求得甲、乙两车离开A城的距离y与时间t的关系式,可求得两函数图象的交点,可判断③,再令两函数解析式的差为50,可求得t,可判断④,可得出答案.【详解】解:由图象可知A、B两城市之间的距离为300km,甲行驶的时间为5小时,而乙是在甲出发1小时后出发的,且乙用时3小时,即比甲早到1小时,故①②都正确;

设甲车离开A城的距离y与t的关系式为y甲=kt,

把(5,300)代入可求得k=60,

∴y甲=60t,

设乙车离开A城的距离y与t的关系式为y乙=mt+n,

把(1,0)和(4,300)代入可得,解得,∴y乙=100t-100,

令y甲=y乙可得:60t=100t-100,解得t=2.5,

即甲、乙两直线的交点横坐标为t=2.5,

此时乙出发时间为1.5小时,即乙车出发1.5小时后追上甲车,故③错误;

令|y甲-y乙|=50,可得|60t-100t+100|=50,即|100-40t|=50,

当100-40t=50时,可解得t=,当100-40t=-50时,可解得t=,令y甲=50,解得t=,令y甲=250,解得t=,∴当t=时,y甲=50,此时乙还没出发,此时相距50千米,

当t=时,乙在B城,此时相距50千米,

综上可知当t的值为或或或时,两车相距50千米,故④错误;

综上可知正确的有①②共两个,

故选:B.【点睛】本题主要考查一次函数的应用,掌握一次函数图象的意义是解题的关键,学会构建一次函数,利用方程组求两个函数的交点坐标,属于中考常考题型.2、B【解析】甲种机器人每小时搬运x千克,则乙种机器人每小时搬运(x+600)千克,由题意得:,故选B.【点睛】本题考查了列分时方程解实际问题的运用,解答时根据甲搬运5000kg所用时间与乙搬运8000kg所用时间相等建立方程是关键.3、A【解析】过E作EF⊥AD于F,易证得Rt△AEF≌Rt△AEB,得到BE=EF,AB=AF,∠AEF=∠AEB;而点E是BC的中点,得到EC=EF=BE,则可证得Rt△EFD≌Rt△ECD,得到DC=DF,∠FDE=∠CDE,也可得到AD=AF+FD=AB+DC,∠AED=∠AEF+∠FED=∠BEC=90°,即可判断出正确的结论.【详解】过E作EF⊥AD于F,如图,∵AB⊥BC,AE平分∠BAD,∴Rt△AEF≌Rt△AEB∴BE=EF,AB=AF,∠AEF=∠AEB;而点E是BC的中点,∴EC=EF=BE,所以③错误;∴Rt△EFD≌Rt△ECD,∴DC=DF,∠ADE=∠CDE,所以②正确;∴AD=AF+FD=AB+DC,所以④正确;∴∠AED=∠AEF+∠FED=∠BEC=90°,所以①正确.故选A.【点睛】此题考查角平分线的性质,全等三角形的判定与性质,解题关键在于掌握判定定理.4、C【分析】根据图象在坐标平面内的位置关系确定k,b的取值范围,从而求解.【详解】∵直线y=kx+b经过第二、四象限,∴k<0,又∵直线y=kx+b经过第三象限,即直线与y轴负半轴相交,∴b<0,故选C.【点睛】本题主要考查一次函数图象在坐标平面内的位置与k、b的关系:k>0时,直线必经过一、三象限;k<0时,直线必经过二、四象限;b>0时,直线与y轴正半轴相交;b=0时,直线过原点;b<0时,直线与y轴负半轴相交.5、C【分析】解分式方程,且分式的分母不能为0.【详解】解:由题意,得x+2=0且x﹣1≠0,解得x=﹣2,故选:C.【点睛】掌握分式方程的解法为本题的关键.6、A【分析】根据立方根、无理数的定义即可得.【详解】是无理数,,是无限循环小数,属于有理数,是有限小数,属于有理数,,小数点后的是无限循环的,是无限循环小数,属于有理数,综上,无理数的个数是2个,故选:A.【点睛】本题考查了立方根、无理数的定义,掌握理解无理数的定义是解题关键.7、A【解析】试题解析:∵AE∥DF,

∴∠A=∠D,

∵AE=DF,

∴要使△EAC≌△FDB,还需要AC=BD,

∴当AB=CD时,可得AB+BC=BC+CD,即AC=BD,

故选A.8、D【解析】试题分析:A.∵∠1=∠3,∴a∥b,故A正确;B.∵∠2+∠4=180°,∠2+∠1=180°,∴∠1=∠4,∵∠4=∠3,∴∠1=∠3,∴a∥b,故B正确;C.∵∠1=∠4,∠4=∠3,∴∠1=∠3,∴a∥b,故C正确;D.∠3和∠4是对顶角,不能判断a与b是否平行,故D错误.故选D.考点:平行线的判定.9、B【分析】先根据三角形三边关系得出第三边的取值范围,然后从选项中选择范围内的数即可.【详解】∵三角形两边长分别为5cm和16cm,∴第三边的取值范围为,即,而四个选项中只有15cm在内,故选:B.【点睛】本题主要考查三角形三边关系,掌握三角形三边关系是解题的关键.10、C【解析】绝对值小于1的负数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定,0.00005=,故选C.二、填空题(每小题3分,共24分)11、55°或70°.【分析】由等腰三角形的一个内角为70°,可分别从70°的角为底角与70°的角为顶角去分析求解,即可求得答案.【详解】∵等腰三角形的一个内角为70°,若这个角为顶角,则底角为:(180°﹣70°)÷2=55°;若这个角为底角,则另一个底角也为70°,∴它的底角为55°或70°.故答案为55°或70°.【点睛】本题考查了等腰三角形的性质.此题比较简单,注意分类讨论思想的应用.12、72;【分析】根据题意设∠A为x,再根据翻折的相关定义得到∠A的大小,随之即可解答.【详解】设∠A为x,则由翻折对应角相等可得∠EDA=∠A=x,由∠BED是△AED的外角可得∠BED=∠EDA+∠A=2x,则由翻折对应角相等可得∠C=∠BED=2x,因为AB=AC,所以∠ABC=∠C=2x,在△ABC中,∠ABC+∠C+∠A=2x+2x+x=180°,所以x=36°,则∠ABC=2x=72°.故本题正确答案为72°.【点睛】本题主要考查三角形内角和定理和等腰三角形的性质.13、【分析】根据题意,由等腰三角形的性质可得BD是AE的垂直平分线,进而得到AD=ED,求出的度数即可得到关于的函数表达式.【详解】∵是的角平分线,∴,∴∴∴∴∴∵,∴∴∵∴∴,故答案为:.【点睛】本题主要考查了等腰三角形的性质及判定,三角形的内角和定理,三角形外角定理,角的和差倍分等相关知识,熟练运用角的计算是解决本题的关键.14、.【分析】求函数自变量的取值范围,就是求函数解析式有意义的条件,二次根式有意义的条件是:被开方数为非负数.【详解】依题意,得x-1≥0,

解得:x≥1.【点睛】本题考查的知识点为:二次根式的被开方数是非负数.15、xy+ay-bx-ab【分析】根据多项式乘以多项式的运算法则进行计算即可得到答案.【详解】(x+a)(y-b)=xy+ay-bx-ab.故答案为:xy+ay-bx-ab.【点睛】本题主要考查了多项式乘以多项式的运算法则,注意不要漏项,有同类项的合并同类项.16、17,144,145【分析】由题意观察题干这些勾股数,根据所给的勾股数找出三个数之间的关系即可.【详解】解:因为这些勾股数的“勾”都是奇数,且从3起就没断过,所以从3、5、7…依次推出第8组的“勾”为17,继续观察可知弦-股=1,利用勾股定理假设股为m,则弦为m+1,所以有,解得,,即第8组勾股数为17,144,145.故答案为17,144,145.【点睛】本题属规律性题目,考查的是勾股数之间的关系,根据题目中所给的勾股数及勾股定理进行分析即可.17、内错角相等,两直线平行【分析】首先对图形进行标注,从而可得到∠2=∠2,然后依据平行线的判定定理进行判断即可.【详解】解:如图所示:由平移的性质可知:∠2=∠2.又∵∠2=∠2,∴∠2=∠2.∴EF∥l(内错角相等,两直线平行).故答案为:内错角相等,两直线平行.【点睛】本题主要考查的是平行线的判定、平移的性质、尺规作图,依据作图过程发现∠2=∠2是解题的关键.18、稳定性【分析】题中给出四边形的不稳定性,即可判断是利用三角形的稳定性.【详解】为使四边形木架不变形,从中钉上一根木条,让四边形变成两个三角形,因为三角形不变形,故应该是利用三角形的稳定性.故答案为:稳定性.【点睛】本题考查三角形稳定性的应用,关键在于熟悉三角形的基本性质.三、解答题(共66分)19、(1)FH=GH,FH⊥HG;(2)△FGP是等腰直角三角形,理由见解析;(3)2【分析】(1)直接利用三角形的中位线定理得出FH=GH,再借助三角形的外角的性质即可得出∠FHG=90°,即可得出结论;(2)由题意可证△CAD≌△CBE,可得∠CAD=∠CBE,AD=BE,根据三角形中位线定理,可证HG=HF,HF∥AD,HG∥BE,根据角的数量关系可求∠GHF=90°,即可证△FGH是等腰直角三角形;(3)由题意可得S△HGF最大=HG2,HG最大时,△FGH面积最大,点D在AC的延长线上,即可求出△FGH面积的最大值.【详解】解:(1)∵AC=BC,CD=CE,∴AD=BE,∵点F是DE的中点,点H是AE的中点,∴FH=AD,∵点G是AB的中点,点H是AE的中点,∴GH=BE,∴FH=GH,∵点F是DE的中点,点H是AE的中点,∴FH∥AD,∴∠FHE=∠CAE∵点G是AB的中点,点H是AE的中点,∴GH∥BE,∴∠AGH=∠B,∵∠C=90°,AC=BC,∴∠BAC=∠B=45°,∵∠EGH=∠B+∠BAE,∴∠FHG=∠FHE+∠EHG=∠CAE+∠B+∠BAE=∠B+∠BAC=90°,∴FH⊥HG,故答案为:FH=GH,FH⊥HG;(2)△FGP是等腰直角三角形理由:由旋转知,∠ACD=∠BCE,∵AC=BC,CD=CE,∴△CAD≌△CBE(SAS),∴∠CAD=∠CBE,AD=BE,由三角形的中位线得,HG=BE,HF=AD,∴HG=HF,∴△FGH是等腰三角形,由三角形的中位线得,HG∥BE,∴∠AGH=∠ABE,由三角形的中位线得,HF∥AD,∴∠FHE=∠DAE,∵∠EHG=∠BAE+∠AGH=∠BAE+∠ABE,∴∠GHF=∠FHE+∠EHG=∠DAE+∠BAE+∠ABE=∠BAD+∠ABE=∠BAC+∠CAD+∠ABC﹣∠CBE=∠CBA+∠CAB,∵∠ACB=90°,AC=BC,∴∠CBA=∠CAB=45°,∴∠GHF=90°,∴△FGH是等腰直角三角形;(3)由(2)知,△FGH是等腰直角三角形,HG=HF=AD,∵S△HGF=HG2,∴HG最大时,△FGH面积最大,∴点D在AC的延长线上,∵CD=4,AC=8∴AD=AC+CD=12,∴HG=×12=1.∴S△PGF最大=HG2=2.【点睛】此题是几何变换综合题,主要考查了等腰直角三角形的判定和性质,全等三角形的判定和性质,旋转的性质,三角形的中位线定理,判断出HG⊥FH是解本题的关键.20、(1)见解析;(2)见解析【分析】(1)根据中位线的性质及平行线的性质即可求解;(2)连接,取的中点,连接,根据中位线的性质证明为等边三角形,再根据得到,得到,即可求解.【详解】解:(1)∵分别是的中点,∴,,.∴,,.∵,∴,∴,∴.(2)连接,取的中点,连接.∵,,H分别是,BD的中点∴,,.∴,,.∵,∴,∴,∴,∵,∴为等边三角形.∴,∵,∴,∴,∴.【点睛】该题以三角形为载体,以考查三角形的中位线定理、等腰三角形的判定等重要几何知识点为核心构造而成;解题的关键是作辅助线,灵活运用有关定理来分析、判断、推理或解答.21、(1)2(x+3)(x-3);(2)(a-2b+3)(a-2b-3)【分析】(1)先提取公因式,然后利用平方差公式因式分解即可;(2)利用完全平方式和平方差公式因式分解即可.【详解】解:(1)==2(x+3)(x-3)(2)==(a-2b+3)(a-2b-3)【点睛】此题考查的是因式分解,掌握提公因式法和公式法因式分解是解决此题的关键.22、(1);(2)1【分析】(1)先化简各二次根式,再合并同类二次根式即可;(2)先化简各二次根式,再进行乘除运算,最后进行减法运算即可.【详解】(1)===;(2)==7-6=1.【点睛】本题主要考查了二次根式的混合运算,解题的关键是掌握二次根式混合运算的顺序和运算法则.23、(1)见解析;(2)见解析;(3)不一定成立,见解析.【解析】(1)求证AB=AC,就是求证∠B=∠C,利用斜边直角边定理(HL)证明Rt△OEB≌Rt△OFC即可;

(2)首先得出Rt△OEB≌Rt△OFC,则∠OBE=∠OCF,由等边对等角得出∠OBC=∠OCB,进而得出∠ABC=∠ACB,由等角对等边即可得AB=AC;

(3)不一定成立,当∠A的平分线所在直线与边BC的垂直平分线重合时,有AB=AC;否则,AB≠AC.【详解】(1)证明:∵点O在边BC上,OE⊥AB,OF⊥AC,点O到△ABC的两边AB,AC所在直线的距离相等,

∴OE=OF,在Rt△OEB和Rt△OFC中∴Rt△OEB≌Rt△OFC(HL),

∴∠ABC=∠ACB,

∴AB=AC;

(2)证明:过点O分别作OE⊥AB于E,OF⊥AC于F,

由题意知,OE=OF.∠BEO=∠CFO=90°,

∵在Rt△OEB和Rt△OFC中

∴Rt△OEB≌Rt△OFC(HL),

∴∠OBE=∠OCF,

又∵OB=OC,

∴∠OBC=∠OCB,

∴∠ABC=∠ACB,

∴AB=AC;

(3)解:不一定成立,当∠A的平分线所在直线与边BC的垂直平分线重合时AB=AC,否则AB≠AC.(如示例图)

【点睛】本题考查全等三角形的判定和性质,等腰三角形的判定和性质,熟练掌握全等三角形的判定方法是解题的关键.24、(1)证明见解析;(2)证明见解析.【分析】(1)由AD⊥BC,CE⊥AB,易得∠AFE=∠B,利用全等三角形的判定得△AEF≌

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论