河北省石家庄市28中学2026届九年级数学第一学期期末联考模拟试题含解析_第1页
河北省石家庄市28中学2026届九年级数学第一学期期末联考模拟试题含解析_第2页
河北省石家庄市28中学2026届九年级数学第一学期期末联考模拟试题含解析_第3页
河北省石家庄市28中学2026届九年级数学第一学期期末联考模拟试题含解析_第4页
河北省石家庄市28中学2026届九年级数学第一学期期末联考模拟试题含解析_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

河北省石家庄市28中学2026届九年级数学第一学期期末联考模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每小题3分,共30分)1.用配方法解方程x2+4x+1=0时,原方程应变形为()A.(x+2)2=3 B.(x﹣2)2=3 C.(x+2)2=5 D.(x﹣2)2=52.二次函数y=ax2+bx+c的部分对应值如表:利用该二次函数的图象判断,当函数值y>0时,x的取值范围是()A.0<x<8 B.x<0或x>8 C.﹣2<x<4 D.x<﹣2或x>43.如图,抛物线的对称轴为,且过点,有下列结论:①>0;②>0;③;④>0.其中正确的结论是()A.①③ B.①④ C.①② D.②④4.如图,在平面直角坐标系中,直线l的表达式是,它与两坐标轴分别交于C、D两点,且∠OCD=60º,设点A的坐标为(m,0),若以A为圆心,2为半径的⊙A与直线l相交于M、N两点,当MN=时,m的值为()A. B. C.或 D.或5.函数与在同一直角坐标系中的大致图象可能是()A. B.C. D.6.如图,四边形ABCD为⊙O的内接四边形,已知∠BCD=130°,则∠BOD=()A.B.C.D.7.如图,从点看一山坡上的电线杆,观测点的仰角是45°,向前走到达点,测得顶端点和杆底端点的仰角分别是60°和30°,则该电线杆的高度()A. B. C. D.8.数学兴趣小组的同学们想利用树影测量树高.课外活动时他们在阳光下测得一根长为1米的竹竿的影子是0.9米,同一时刻测量树高时,发现树的影子不全落在地面上,有一部分影子落在教学楼的台阶上,且影子的末端刚好落在最后一级台阶的上端C处,他们测得落在地面的影长为1.1米,台阶总的高度为1.0米,台阶水平总宽度为1.6米.则树高为()A.3.0m B.4.0m C.5.0m D.6.0m9.关于x的方程ax2+bx+c=0是一元二次方程,则满足()A.a≠0 B.a>0 C.a≥0 D.全体实数10.若.则下列式子正确的是()A. B. C. D.二、填空题(每小题3分,共24分)11.如图是甲、乙两人同一地点出发后,路程随时间变化的图象.(1)甲的速度______乙的速度.(大于、等于、小于)(2)甲乙二人在______时相遇;(3)路程为150千米时,甲行驶了______小时,乙行驶了______小时.12.如图,⊙O的直径AB垂直于弦CD,垂足为E.如果∠B=60°,AC=6,那么CD的长为______.13.某校九年1班共有45位学生,其中男生有25人,现从中任选一位学生,选中女生的概率是____.14.若锐角满足,则__________.15.如图,在正方形ABCD中,点E在BC边上,且BC=3BE,AF平分∠DAE,交DC于点F,若AB=3,则点F到AE的距离为___________.16.一棵参天大树,树干周长为3米,地上有一根常春藤恰好绕了它5圈,藤尖离地面20米高,那么这根常春藤至少有____米.17.在这三个数中,任选两个数的积作为的值,使反例函数的图象在第二、四象限的概率是______.18.某商场为方便消费者购物,准备将原来的阶梯式自动扶梯改造成斜坡式自动扶梯.如图所示,已知原阶梯式自动扶梯长为,坡角为;改造后的斜坡式自动扶梯的坡角为,则改造后的斜坡式自动扶梯的长度约为________.(结果精确到,温馨提示:,,)三、解答题(共66分)19.(10分)已知:梯形ABCD中,AD//BC,AD=AB,对角线AC、BD交于点E,点F在边BC上,且∠BEF=∠BAC.(1)求证:△AED∽△CFE;(2)当EF//DC时,求证:AE=DE.20.(6分)某景区检票口有A、B、C、D共4个检票通道.甲、乙两人到该景区游玩,两人分别从4个检票通道中随机选择一个检票.(1)甲选择A检票通道的概率是;(2)求甲乙两人选择的检票通道恰好相同的概率.21.(6分)如图,锐角三角形中,,分别是,边上的高,垂足为,.(1)证明:.(2)若将,连接起来,则与能相似吗?说说你的理由.22.(8分)知识改变世界,科技改变生活.导航装备的不断更新极大地方便了人们的出行.中国北斗导航已经全球组网,它已经走进了人们的日常生活.如图,某校周末组织学生利用导航到某地(用表示)开展社会实践活动,车辆到达地后,发现地恰好在地的正北方向,且距离地8千米.导航显示车辆应沿北偏东60°方向行驶至地,再沿北偏西45°方向行驶一段距离才能到达地.求两地间的距离(结果精确到0.1千米).(参考数据:)23.(8分)如图,直线y=﹣x+b与反比例函数y=的图形交于A(a,4)和B(4,1)两点(1)求b,k的值;(2)若点C(x,y)也在反比例函数y=(x>0)的图象上,求当2≤x≤6时,函数值y的取值范围;(3)将直线y=﹣x+b向下平移m个单位,当直线与双曲线没有交点时,求m的取值范围.24.(8分)(如图1,若抛物线l1的顶点A在抛物线l2上,抛物线l2的顶点B也在抛物线l1上(点A与点B不重合).我们称抛物线l1,l2互为“友好”抛物线,一条抛物线的“友好”抛物线可以有多条.(1)如图2,抛物线l3:与y轴交于点C,点D与点C关于抛物线的对称轴对称,则点D的坐标为;(2)求以点D为顶点的l3的“友好”抛物线l4的表达式,并指出l3与l4中y同时随x增大而增大的自变量的取值范围;(3)若抛物线y=a1(x-m)2+n的任意一条“友好”抛物线的表达式为y=a2(x-h)2+k,写出a1与a2的关系式,并说明理由.25.(10分)某商场销售一种商品的进价为每件30元,销售过程中发现月销售量y(件)与销售单价x(元)之间的关系如图所示.(1)根据图象直接写出y与x之间的函数关系式.(2)设这种商品月利润为W(元),求W与x之间的函数关系式.(3)这种商品的销售单价定为多少元时,月利润最大?最大月利润是多少?26.(10分)(1016内蒙古包头市)一幅长10cm、宽11cm的图案,如图,其中有一横两竖的彩条,横、竖彩条的宽度比为3:1.设竖彩条的宽度为xcm,图案中三条彩条所占面积为ycm1.(1)求y与x之间的函数关系式;(1)若图案中三条彩条所占面积是图案面积的,求横、竖彩条的宽度.

参考答案一、选择题(每小题3分,共30分)1、A【分析】先把常数项移到方程右侧,然后配一次项系数一半的平方即可求解.【详解】x2+4x=﹣1,x2+4x+4=3,(x+2)2=3,故选:A.本题考查了解一元二次方程-配方法,掌握在二次项系数为1的前提下,配一次项系数一半的平方是关键.2、C【分析】观察表格得出抛物线顶点坐标是(1,9),对称轴为直线x=1,而当x=-2时,y=0,则抛物线与x轴的另一交点为(1,0),由表格即可得出结论.【详解】由表中的数据知,抛物线顶点坐标是(1,9),对称轴为直线x=1.当x<1时,y的值随x的增大而增大,当x>1时,y的值随x的增大而减小,则该抛物线开口方向向上,所以根据抛物线的对称性质知,点(﹣2,0)关于直线直线x=1对称的点的坐标是(1,0).所以,当函数值y>0时,x的取值范围是﹣2<x<1.故选:C.本题考查了二次函数与x轴的交点、二次函数的性质等知识,解答本题的关键是要认真观察,利用表格中的信息解决问题.3、C【分析】根据抛物线的开口方向、对称轴、与y轴的交点判定系数符号及运用一些特殊点解答问题.【详解】由抛物线的开口向下可得:a<0,

根据抛物线的对称轴在y轴左边可得:a,b同号,所以b<0,

根据抛物线与y轴的交点在正半轴可得:c>0,

∴abc>0,故①正确;

直线x=-1是抛物线y=ax2+bx+c(a≠0)的对称轴,所以-=-1,可得b=2a,

a-2b+4c=a-4a+4c=-3a+4c,

∵a<0,

∴-3a>0,

∴-3a+4c>0,

即a-2b+4c>0,故②正确;

∵b=2a,a+b+c<0,

∴2a+b≠0,故③错误;

∵b=2a,a+b+c<0,

∴b+b+c<0,

即3b+2c<0,故④错误;

故选:C.此题考查二次函数图象与系数的关系,掌握二次函数的性质、灵活运用数形结合思想是解题的关键,解答时,要熟练运用抛物线的对称性和抛物线上的点的坐标满足抛物线的解析式.4、C【分析】根据题意先求得、的长,分两种情况讨论:①当点在直线l的左侧时,利用勾股定理求得,利用锐角三角函数求得,即可求得答案;②当点在直线l的右侧时,同理可求得答案.【详解】令,则,点D的坐标为,∵∠OCD=60º,∴,分两种情况讨论:①当点在直线l的左侧时:如图,过A作AG⊥CD于G,∵,MN=,∴,∴,在中,∠ACG=60º,∴,∴,∴,②当点在直线l的右侧时:如图,过A作AG⊥直线l于G,∵,MN=,∴,∴,在中,∠ACG=60º,∴,∴,∴,综上:m的值为:或.故选:C.本题考查了一次函数图象上点的坐标特征,勾股定理,锐角三角函数,分类讨论、构建合适的辅助线是解题的关键.5、B【分析】分a>0与a<0两种情况分类讨论即可确定正确的选项.【详解】解:当a>o时,函数的图象位于一、三象限,的开口向下,交y轴的负半轴,选项B符合;当a<o时,函数的图象位于二、四象限,的开口向上,交y轴的正半轴,没有符合的选项.故答案为:B.本题考查的知识点是反比例函数的图象与二次函数的图象,理解掌握函数图象的性质是解此题的关键.6、C【解析】根据圆内接四边形的性质求出∠A的度数,再根据圆周角定理求解即可.【详解】∵四边形ABCD为⊙O的内接四边形,∠BCD=130°,∴∠A+∠BCD=180°,∴∠A=50°,由圆周角定理得,2∠A=∠BOD=100°,故选C.本题考查了圆内接四边形的性质,圆周角定理,熟练掌握圆内接四边形的对角互补是解题的关键.7、A【分析】延长PQ交直线AB于点E,设PE=x米,在直角△APE和直角△BPE中,根据三角函数利用x表示出AE和BE,根据AB=AE-BE即可列出方程求得x的值,再在直角△BQE中利用三角函数求得QE的长,则PQ的长度即可求解.【详解】解:延长PQ交直线AB于点E,设PE=x.

在直角△APE中,∠PAE=45°,

则AE=PE=x;

∵∠PBE=60°

∴∠BPE=30°

在直角△BPE中,,∵AB=AE-BE=6,则解得:∴在直角△BEQ中,故选:A本题考查解直角三角形的应用-仰角俯角问题,解答本题的关键是明确题意,利用锐角三角函数和数形结合的思想解答.8、B【分析】根据同一时刻物高与影长成正比例列式计算即可.【详解】根据同一时刻物高与影长成正比例可得,如图,∴=.∴AD=1.∴AB=AD+DB=1+1=2.故选:B.本题考查了相似三角形的应用,只要是把实际问题抽象到相似三角形中,利用相似三角形的相似比,列出方程,通过解方程求解,加上DB的长即可.解此题的关键是找到各部分以及与其对应的影长.9、A【解析】根据一元二次方程的定义求解.一元二次方程必须满足两个条件:(1)未知数的最高次数是2;(2)二次项系数不为1.【详解】由于关于x的方程ax2+bx+c=1是一元二次方程,所以二次项系数不为零,即a≠1.故选:A.此题考查一元二次方程的定义,熟记一元二次方程满足的条件即可正确解题.10、A【分析】直接利用比例的性质分别判断即可得出答案.【详解】∵2x-7y=0,∴2x=7y.A.,则2x=7y,故此选项正确;B.,则xy=14,故此选项错误;C.,则2y=7x,故此选项错误;D.,则7x=2y,故此选项错误.故选A.本题考查了比例的性质,正确将比例式变形是解题的关键.二、填空题(每小题3分,共24分)11、(1)、小于;(2)、6;(3)、9、4【解析】试题分析:根据图像可得:甲的速度小于乙的速度;两人在6时相遇;甲行驶了9小时,乙行驶了4小时.考点:函数图像的应用12、6【分析】由AB是⊙O的直径,根据由垂径定理得出AD=AC,进而利用等边三角形的判定和性质求得答案.【详解】解:连接AD,∵⊙O的直径AB垂直于弦CD,垂足为E,∴AD=AC,∵∠B=60°,∴△ACD是等边三角形,∵AC=6,∴CD=AC=6.故答案为:6.此题考查了垂径定理以及等边三角形数的判定与性质.注意由垂径定理得出AD=AC是关键.13、【详解】解:选中女生的概率是:.14、【分析】根据特殊角三角函数值,可得答案.【详解】解:由∠A为锐角,且,∠A=60°,

故答案为:60°.本题考查了特殊角三角函数值,熟记特殊角三角函数值是解题关键.15、【分析】延长AE交DC延长线于M,关键相似求出CM的长,求出AM长,根据角平分线性质得出比例式,代入求出即可.【详解】延长AE交DC延长线于M,

∵四边形ABCD是正方形,BC=3BE,BC=3,

∴AD=DC=BC=AB=3,∠D=90°,BE=1,CE=2,AB∥DC,

∴△ABE∽△MCE,

∴,

∴CM=2AB=6,

即DM=3+6=9,

由勾股定理得:,

∵AF平分∠DAE,

∴,

∴,

解得:,

∵AF平分∠DAE,∠D=90°,

∴点F到AE的距离=,

故答案为:.本题考查了角平分线性质,勾股定理,相似三角形的性质和判定,正方形的性质等知识点,能正确作出辅助线是解此题的关键.16、25【分析】如下图,先分析常春藤一圈展开图,求得常春藤一圈的长度后,再求总长度.【详解】如下图,是常春藤恰好绕树的图形∵绕5圈,藤尖离地面20米∴常春藤每绕1圈,对应的高度为20÷5=4米我们将绕树干1圈的图形展开如下,其中,AB表示树干一圈的长度,AC表示常春藤绕树干1圈的高度,BC表示常春藤绕树干一圈的长度∴在Rt△ABC中,BC=5∴常春藤总长度为:5×5=25米故答案为:25本题考查侧面展开图的运算,解题关键是将题干中的树干展开为如上图△ABC的形式.17、【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果,并求出k为负值的情况数,再利用概率公式即可求得答案.【详解】解:画树状图得:,∵共有6种等可能的结果,任选两个数的积作为k的值,k为负数的有4种,∴反比例函数的图象在第二、四象限的概率是:.

故答案为:.本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比.18、19.1【分析】先在Rt△ABD中,用三角函数求出AD,最后在Rt△ACD中用三角函数即可得出结论.【详解】解:在Rt△ABD中,∠ABD=30°,AB=10m,∴AD=ABsin∠ABD=10×sin30°=5(m),在Rt△ACD中,∠ACD=15°,sin∠ACD=,∴AC=≈≈19.1(m),即:改造后的斜坡式自动扶梯AC的长度约为19.1m.故答案为:19.1.此题主要考查了解直角三角形的应用,解决此问题的关键在于正确理解题意得基础上建立数学模型,把实际问题转化为数学问题.三、解答题(共66分)19、(1)证明见解析;(2)证明见解析.【解析】试题分析:两组角对应相等,两个三角形相似.证明根据相似三角形对应边成比例,即可证明.试题解析:(1)又∵AD//BC,(2)∵EF//DC,∴.∵AD//BC,∴,∴.即,20、(1);(2).【分析】(1)直接利用概率公式求解;(2)通过列表展示所有9种等可能结果,再找出通道不同的结果数,然后根据概率公式求解.【详解】(1)解:一名游客经过此检票口时,选择A通道通过的概率=,故答案为:;(2)解:列表如下:ABCDA(A,A)(A,B)(A,C)(A,D)B(B,A)(B,B)(B,C)(B,D)C(C,A)(C,B)(C,C)(C,D)D(D,A)(D,B)(D,C)(D,D)共有16种可能结果,并且它们的出现是等可能的,“甲、乙两人选择相同检票通道”记为事件E,它的发生有4种可能:(A,A)、(B,B)、(C,C)、(D,D)∴P(E)==.本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.21、(1)见解析;(2)能,理由见解析.【分析】(1)根据已知利用有两个角相等的三角形相似判定即可;

(2)根据第一问可得到AD:AE=AC:AB,有一组公共角∠A,则可根据两组对应边的比相等且相应的夹角相等的两个三角形相似进行判定.【详解】证明:.证明:∵,分别是,边上的高,∴.∵,∴.若将,连接起来,则与能相似吗?说说你的理由.∵,∴.∴AD:AC=AE:AB∵,∴.考查相似三角形的判定与性质,掌握相似三角形的判定定理是解题的关键.22、7.2千米【解析】设千米,过点作,可得,根据,列方程求解即可.【详解】解:设千米,过点作,交于点在中,在中,,∵∴∴答:两地间的距离约为7.2千米.本题主要考查解直角三角形应用和特殊三角函数..熟练掌握特殊三角函数值是解决问题的关键.23、(2)b=5,k=4;(2);(3)2<m<2.【分析】(2)把B(4,2)分别代入y=﹣x+b和y=,即可得到b,k的值;(2)根据反比例函数的性质,即可得到函数值y的取值范围;(3)将直线y=﹣x+5向下平移m个单位后解析式为y=﹣x+5﹣m,依据﹣x+5﹣m=,可得△=(m﹣5)2﹣26,当直线与双曲线只有一个交点时,根据△=0,可得m的值.【详解】解:(2)∵直线y=﹣x+b过点B(4,2),∴2=﹣4+b,解得b=5,∵反比例函数y=的图象过点B(4,2),∴k=4;(2)∵k=4>0,∴当x>0时,y随x值增大而减小,∴当2≤x≤6时,≤y≤2;(3)将直线y=﹣x+5向下平移m个单位后解析式为y=﹣x+5﹣m,设直线y=﹣x+5﹣m与双曲线y=只有一个交点,令﹣x+5﹣m=,整理得x2+(m﹣5)x+4=0,∴△=(m﹣5)2﹣26=0,解得m=2或2.∴直线与双曲线没有交点时,2<m<2.本题主要考查了反比例函数与一次函数交点问题,一次函数图象与几何变换以及一元二次方程根与系数的关系的运用,解题时注意:求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,若方程组有解则两者有交点,方程组无解,则两者无交点.24、(1);(2)的函数表达式为,;(3),理由详见解析【分析】(1)设x=1,求出y的值,即可得到C的坐标,根据抛物线L3:得到抛物线的对称轴,由此可求出点C关于该抛物线对称轴对称的对称点D的坐标;(2)由(1)可知点D的坐标为(4,1),再由条件以点D为顶点的L3的“友好”抛物线L4的解析式,可求出L4的解析式,进而可求出L3与L4中y同时随x增大而增大的自变量的取值范围;

(3)根据:抛物线L1的顶点A在抛物线L2上,抛物线L2的顶点B也在抛物线L1上,可以列出两个方程,相加可得(a1+a2)(h-m)2=1.可得.【详解】解:(1)∵抛物线l3:,

∴顶点为(2,-1),对称轴为x=2,

设x=1,则y=1,

∴C(1,1),

∴点C关于该抛物线对称轴对称的对称点D的坐标为:(4,1);(2)解:设的函数表达式为由“友好”抛物线的定义,过点的函数表达式为与中同时随增大而增大的自变量的取值范围是(3)理由如下:∵抛物线与抛物线互为“友好”抛物线,①+②得:本题属于二次函数的综合题,涉及了抛物线的对称变换、抛物线与坐标轴的交点坐标以及新定义的问题,解答本题的关键是数形结合,特别是(3)问根据已知条件得出方程组求解,有一定难度.25、(1)y=;(2)W=;(3)这种商品的销售单价定为65元时,月利润最大,最大月利润是1.【分析】(1)当40≤x≤60时,设y与x之间的函数关系式为y=kx+b,当60<x≤90时,设y与x之间的函数关系式为y=mx+n,解方程组即可得到结论;(2)当40≤x≤60时,当60<x≤90时,根据题意即可得到函数解析式;(3)当40≤x≤60时,W=-x2+210x-5400,得到当x=60时,W最大=-602+210×60-5400=3600,当60<x≤90时,W=-3x2+

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论