江苏省南通市如皋市白蒲中学2026届数学八上期末考试试题含解析_第1页
江苏省南通市如皋市白蒲中学2026届数学八上期末考试试题含解析_第2页
江苏省南通市如皋市白蒲中学2026届数学八上期末考试试题含解析_第3页
江苏省南通市如皋市白蒲中学2026届数学八上期末考试试题含解析_第4页
江苏省南通市如皋市白蒲中学2026届数学八上期末考试试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

江苏省南通市如皋市白蒲中学2026届数学八上期末考试试题试试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.图①是我国古代著名的“赵爽弦图”的示意图,它是由四个全等的直角三角形围成的.若AC=6,BC=5,将四个直角三角形中的边长为6的直角边分别向外延长一倍,得到图②所示的“数学风车”,则这个风车的外围周长是(

)A.51 B.49 C.76 D.无法确定2.如图,在△ABC中,∠C=36°,将△ABC沿着直线l折叠,点C落在点D的位置,则∠1﹣∠2的度数是()A.36° B.72° C.50° D.46°3.如图,,,三点在同一条直线上,,,添加下列条件,不能判定的是()A. B. C. D.4.若等腰三角形有两条边的长度为3和1,则此等腰三角形的周长为A.5 B.7 C.5或7 D.65.下列语句中,是命题的是()A.延长线段到 B.垂线段最短C.画 D.等角的余角相等吗?6.如图,等边△ABC中,BD⊥AC于D,AD=3.5cm,点P、Q分别为AB、AD上的两个定点且BP=AQ=2cm,在BD上有一动点E使PE+QE最短,则PE+QE的最小值为()A.3cm B.4cm C.5cm D.6cm7.如图,平分,于,于,与的交点为,则图中全等三角形共有()A.2对 B.3对 C.4对 D.5对8.在平面直角坐标系中,点P(﹣3,2)在()A.第一象限 B.第二象限 C.第三象限 D.第四象限9.下列文化体育活动的图案中,是轴对称图形的是()A. B.C. D.10.下列计算正确的是()A.+= B.=4 C.3﹣=3 D.=二、填空题(每小题3分,共24分)11.如图,在△ABC中,∠C=90°,DE是AB的垂直平分线,AD恰好平分∠BAC,若DE=1,则BC的长是_____.12.如图,已知正六边形ABCDEF的边长是5,点P是AD上的一动点,则PE+PF的最小值是_____.13.若实数x,y满足y=+3,则x+y=_____.14.铁路部门规定旅客免费携带行李箱的长宽高之和不超过160cm,某厂家生产符合该规定的行李箱,已知行李箱的高为30cm,长与宽之比为3:2,则该行李箱长度的最大值是cm.15.的立方根是________.16.如图,△ABC的三个顶点均在5×4的正方形网格的格点上,点M也在格点上(不与B重合),则使△ACM与△ABC全等的点M共有__________个.17.如图,有一矩形纸片OABC放在直角坐标系中,O为原点,C在x轴上,OA=6,OC=10,如图,在OA上取一点E,将△EOC沿EC折叠,使O点落在AB边上的D点处,则点E的坐标为_______。18.如图,点在同一直线上,已知,要使,以“”需要补充的一个条件是________________(写出一个即可).三、解答题(共66分)19.(10分)如图,在△ABC中,∠BAC是钝角,按要求完成下列画图.(不写作法,保留作图痕迹)(1)用尺规作∠BAC的平分线AE和AB边上的垂直平分线MN;(2)用三角板作AC边上的高BD.20.(6分)如图,点C、F在线段BE上,∠ABC=∠DEF=90°,BC=EF,请只添加一个合适的条件使△ABC≌△DEF.(1)根据“ASA”,需添加的条件是;根据“HL”,需添加的条件是;(2)请从(1)中选择一种,加以证明.21.(6分)如图1,若△ABC和△ADE为等边三角形,M,N分别为EB,CD的中点,易证:CD=BE,△AMN是等边三角形:(1)当把△ADE绕点A旋转到图2的位置时,CD=BE吗?若相等请证明,若不等于请说明理由;(2)当把△ADE绕点A旋转到图3的位置时,△AMN还是等边三角形吗?若是请证明,若不是,请说明理由(可用第一问结论).22.(8分)如图,已知点,,,在一条直线上,且,,,求证:.23.(8分)已知求的值;已知,求的值;已知,求的值.24.(8分)若式子无意义,求代数式(y+x)(y-x)+x2的值.25.(10分)如图,中,,,垂足为,,,垂足分别是、.(1)求证:;(2)若,写出图中长度是的所有线段.26.(10分)如图,在中,.(1)作的角平分线交于点;(要求:尺规作图,保留作图痕迹,不写作法)(2)若,过点作于,求的长.

参考答案一、选择题(每小题3分,共30分)1、C【解析】试题解析:依题意得,设“数学风车”中的四个直角三角形的斜边长为x,则x2=122+52=169,解得x=1.故“数学风车”的周长是:(1+6)×4=2.故选C.2、B【分析】由折叠的性质得到∠D=∠C,再利用外角性质即可求出所求角的度数.【详解】解:由折叠的性质得:∠D=∠C=36°,根据外角性质得:∠1=∠3+∠C,∠3=∠2+∠D,则∠1=∠2+∠C+∠D=∠2+2∠C=∠2+72°,则∠1﹣∠2=72°.故选:B.【点睛】此题考查了翻折变换(折叠问题),以及外角性质,熟练掌握折叠的性质是解本题的关键.3、D【分析】根据全等三角形的判定的方法,即可得到答案.【详解】解:∵,,A、,满足HL的条件,能证明全等;B、,得到,满足ASA,能证明全等;C、,得到,满足SAS,能证明全等;D、不满足证明三角形全等的条件,故D不能证明全等;故选:D.【点睛】本题考查了全等三角形的判定,解题的关键是熟练掌握证明三角形全等的几种方法.4、B【分析】因为已知长度为3和1两边,没有明确是底边还是腰,所以有两种情况,需要分类讨论:【详解】①当3为底时,其它两边都为1,∵1+1<3,∴不能构成三角形,故舍去.当3为腰时,其它两边为3和1,3、3、1可以构成三角形,周长为1.故选B.【点睛】本题考查等腰三角形的性质,以及三边关系,分类讨论是关键.5、B【分析】根据命题的定义解答即可.【详解】解:A、延长线段AB到C,不是命题;

B、垂线段最短,是命题;

C、画,不是命题;

D、等角的余角相等吗?不是命题;

故选:B.【点睛】本题考查了命题与定理:判断一件事情的语句叫命题.6、C【分析】作点Q关于BD的对称点Q′,连接PQ′交BD于E,连接QE,此时PE+EQ的值最小.最小值PE+PQ=PE+EQ′=PQ′,【详解】解:如图,∵△ABC是等边三角形,

∴BA=BC,

∵BD⊥AC,

∴AD=DC=3.5cm,

作点Q关于BD的对称点Q′,连接PQ′交BD于E,连接QE,此时PE+EQ的值最小.最小值为PE+PQ=PE+EQ′=PQ′,

∵AQ=2cm,AD=DC=3.5cm,

∴QD=DQ′=1.5(cm),

∴CQ′=BP=2(cm),

∴AP=AQ′=5(cm),

∵∠A=60°,

∴△APQ′是等边三角形,

∴PQ′=PA=5(cm),

∴PE+QE的最小值为5cm.

故选:C.【点睛】本题考查了等边三角形的性质和判定,轴对称最短问题等知识,解题的关键是学会利用轴对称解决最短问题.7、C【详解】∵平分∴∠BOC=∠AOC又∵,∴∠AEO=∠BDO=90°又∵OC=OC∴∴OD=OE,CD=CE又∵∠BOD=∠AOE∴∴OA=OB,∠A=∠B∴又∵∠ACD=∠BCE∴故答案为C.【点睛】此题主要考查全等三角形的判定,熟练掌握,即可解题.8、B【分析】根据各象限的点的坐标的符号特征判断即可.【详解】∵-3<0,2>0,∴点P(﹣3,2)在第二象限,故选:B.【点睛】本题考查了各象限内点的坐标的符号特征,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-),记住各象限内点的坐标的符号是解决的关键.9、C【解析】根据轴对称图形的概念对各图形分析判断后即可求解.【详解】A、图形不是轴对称图形,B、图形不是轴对称图形,C、图形是轴对称图形,D、图形不是轴对称图形,故选:C.【点睛】本题主要考查了轴对称图形的判断,熟练掌握相关概念是解题关键.10、D【解析】解:A.与不能合并,所以A错误;B.,所以B错误;C.,所以C错误;D.,所以D正确.故选D.二、填空题(每小题3分,共24分)11、1【解析】根据线段垂直平分线上的点到线段两端点的距离相等可得AD=BD,再根据等边对等角的性质求出∠DAB=∠B,然后根据角平分线的定义与直角三角形两锐角互余求出∠B=10°,再根据直角三角形10°角所对的直角边等于斜边的一半求出BD,然后求解即可.【详解】解:∵AD平分∠BAC,且DE⊥AB,∠C=90°,∴CD=DE=1,∵DE是AB的垂直平分线,∴AD=BD,∴∠B=∠DAB,∵∠DAB=∠CAD,∴∠CAD=∠DAB=∠B,∵∠C=90°,∴∠CAD+∠DAB+∠B=90°,∴∠B=10°,∴BD=2DE=2,∴BC=BD+CD=1+2=1,故答案为1.【点睛】本题考查了角平分线的定义和性质,线段垂直平分线上的点到线段两端点的距离相等的性质,直角三角形10°角所对的直角边等于斜边的一半的性质,属于基础题,熟记性质是解题的关键.12、10【解析】利用正多边形的性质,可得点B关于AD对称的点为点E,连接BE交AD于P点,那么有PB=PF,PE+PF=BE最小,根据正六边形的性质可知三角形APB是等边三角形,因此可知BE的长为10,即PE+PF的最小值为10.故答案为10.13、1.【分析】根据被开方数大于等于0列式求出x的值,再求出y的值,然后相加即可得解.【详解】解:根据题意得,5﹣x≥0且x﹣5≥0,解得x≤5且x≥5,∴x=5,y=3,∴x+y=5+3=1.故答案为:1.【点睛】本题考查了二次根式有意义的条件,掌握二次根式的被开方数大于等零时有意义是解题的关键.14、1.【分析】设长为3x,宽为2x,再由行李箱的长、宽、高之和不超过160cm,可得出不等式,解出即可.【详解】解:设长为3xcm,宽为2xcm,由题意,得:5x+30≤160,解得:x≤26,故行李箱的长的最大值为1.故答案为1cm.15、-3.【分析】根据立方根的定义求解即可.【详解】解:-27的立方根是-3,故答案为-3.【点睛】本题考查了立方根的定义,属于基础题型,熟知立方根的概念是解题的关键.16、3【分析】根据△ACM与△ABC全等,在网格上可以找到三个M点,可利用SSS证明△ACM与△ABC全等.【详解】根据题意在图中取到三个M点,分别为M1、M2、M3,如图所示:∵∴△ABC≌△CM1A∵∴△ABC≌△AM2C∵∴△ABC≌△CM3A故答案为:3【点睛】本题考查了全等三角形的性质和判定,本题主要利用SSS方法得到两个三角形全等.17、【分析】先根据翻转的性质可得,再利用勾股定理求出BD,从而可知AD,设,在中利用勾股定理建立方程,求解即可得.【详解】由矩形的性质得:由翻转变换的性质得:在中,则设,则在中,,即解得故点E的坐标为.【点睛】本题考查了矩形的性质、图形翻转变换的性质、勾股定理,根据翻转变换的性质和勾股定理求出BD的长是解题关键.18、等【分析】需要补充的一个条件是BE=CF,若BF=CE,可用AAS证明△ABF≌△DCE;若补充条件AF=DE,也可用AAS证明△ABF≌△DCE.【详解】解:要使△ABF≌△DCE,又∵∠A=∠D,∠B=∠C,添加BF=CE或AF=DE,可用AAS证明△ABF≌△DCE;故填空答案:等.【点睛】本题考查了全等三角形的判定;题目是开放型题目,根据已知条件结合判定方法,找出所需条件,一般答案不唯一,只要符合要求即可.三、解答题(共66分)19、(1)作图见解析;(2)作图见解析.【解析】(1)根据角平分线与垂直平分线的作图方法进行作图即可;(2)利用直角三角板,一条直角边与AC重合,另一条直角边过点B,进行作图即可.【详解】如图所示:【点睛】此题主要考查了复杂作图,关键是掌握角平分线和线段垂直平分线的基本作图方法.20、(1)∠ACB=∠DFE,AC=DF;(2)选择添加条件AC=DE,证明见解析.【分析】(1)根据题意添加条件即可;(2)选择添加条件AC=DE,根据“HL”证明即可.【详解】(1)根据“ASA”,需添加的条件是∠ACB=∠DFE,根据“HL”,需添加的条件是AC=DF,故答案为:∠ACB=∠DFE,AC=DF;(2)选择添加条件AC=DE证明,证明:∵∠ABC=∠DEF=90°,∴在Rt△ABC和Rt△DEF中,,∴Rt△ABC≌Rt△DEF(HL).【点睛】本题考查了全等三角形的判定,熟知全等三角形的判定定理是解题关键,证明三角形全等时注意条件的对应.21、(1)CD=BE.理由见解析;(2)△AMN是等边三角形.理由见解析.【分析】(1)CD=BE.利用“等边三角形的三条边相等、三个内角都是60°”的性质证得△ABE≌△ACD;然后根据全等三角形的对应边相等即可求得结论CD=BE;(2)△AMN是等边三角形.首先利用全等三角形“△ABE≌△ACD”的对应角相等、已知条件“M、N分别是BE、CD的中点”、等边△ABC的性质证得△ABM≌△ACN;然后利用全等三角形的对应边相等、对应角相等求得AM=AN、∠NAM=∠NAC+∠CAM=∠MAB+∠CAM=∠BAC=60°,所以有一个角是60°的等腰三角形的正三角形.【详解】(1)CD=BE.理由如下:∵△ABC和△ADE为等边三角形,∴AB=AC,AD=AE,∠BAC=∠EAD=60°,∵∠BAE=∠BAC﹣∠EAC=60°﹣∠EAC,∠DAC=∠DAE﹣∠EAC=60°﹣∠EAC,∴∠BAE=∠DAC,在△ABE和△ACD中,,∴△ABE≌△ACD(SAS)∴CD=BE(2)△AMN是等边三角形.理由如下:∵△ABE≌△ACD,∴∠ABE=∠ACD.∵M、N分别是BE、CD的中点,∴BM=CN∵AB=AC,∠ABE=∠ACD,在△ABM和△ACN中,,∴△ABM≌△ACN(SAS).∴AM=AN,∠MAB=∠NAC.∴∠NAM=∠NAC+∠CAM=∠MAB+∠CAM=∠BAC=60°∴△AMN是等边三角形【点睛】本题考查了等边三角形的性质、全等三角形的判定与性质、旋转的性质.等边三角形的判定:有一个角是60°的等腰三角形是等边三角形.22、证明见解析【解析】应用三角形全等的判定定理(SSS)进行证明.【详解】,,即,在和中,,,.【点睛】本题考查了全等三角形的判定与性质,解题的关键是熟练掌握全等三角形的判定方法并具有审题的能力.23、(1);(2);(3).【分析】(1)根据同底数幂的乘法法则,将转换成,即可求出的值;(2)根据同底数幂的乘法法则,将转换成,即可求出的值;(3)利用完全平方公式将转换成,再代入求解即可.【详解】(1)∵∴解得(2)∵∴解得(3

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论