




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2026届山东省莱芜市数学九上期末质量检测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.下列图形中,是中心对称图形但不是轴对称图形的是()A. B. C. D.2.在下列命题中,真命题是()A.相等的角是对顶角 B.同位角相等C.三角形的外角和是 D.角平分线上的点到角的两边相等3.下列事件中为必然事件的是()A.抛一枚硬币,正面向上 B.打开电视,正在播放广告C.购买一张彩票,中奖 D.从三个黑球中摸出一个是黑球4.下列方程是一元二次方程的是()A. B.x2+5=0 C.x2+=8 D.x(x+3)=x2﹣15.一条排水管的截面如图所示,已知排水管的半径OB=10,水面宽AB=16,则截面圆心O到水面的距离OC是()A.4 B.5 C.6 D.66.若,相似比为1:2,则与的面积的比为()A.1:2 B.2:1 C.1:4 D.4:17.如图,已知小明、小颖之间的距离为3.6m,他们在同一盏路灯下的影长分别为1.8m,1.6m,已知小明、小颖的身高分别为1.8m,1.6m,则路灯的高为()A.3.4m B.3.5m C.3.6m D.3.7m8.若,面积之比为,则相似比为()A. B. C. D.9.如图,的正切值为()A. B. C. D.10.中国在夏代就出现了相当于砝码的“权”,此后的多年间,不同朝代有不同形状和材质的“权”作为衡量的量具.下面是一个“”形增砣砝码,其俯视图如下图所示,则其主视图为()A. B. C. D.11.已知:如图,某学生想利用标杆测量一棵大树的高度,如果标杆EC的高为1.6m,并测得BC=2.2m,CA=0.8m,那么树DB的高度是()A.6m B.5.6m C.5.4m D.4.4m12.如图,AB、BC、CD、DA都是⊙O的切线,已知AD=2,BC=5,则AB+CD的值是A.14 B.12 C.9 D.7二、填空题(每题4分,共24分)13..如图,圆锥侧面展开得到扇形,此扇形半径CA=6,圆心角∠ACB=120°,则此圆锥高OC的长度是_______.14.如图,“吃豆小人”是一个经典的游戏形象,它的形状是一个扇形,若开口∠1=60°,半径为,则这个“吃豆小人”(阴影图形)的面积为_____.15.如图,在中,,,延长至点,使,则________.16.若,则=_____.17.已知点,都在反比例函数图象上,则____(填“”或“”或“”).18.如图是小孔成像原理的示意图,点与物体的距离为,与像的距离是,.若物体的高度为,则像的高度是_________.三、解答题(共78分)19.(8分)如图,已知直线y=x+2与x轴、y轴分别交于点B,C,抛物线y=x2+bx+c过点B、C,且与x轴交于另一个点A.(1)求该抛物线的表达式;(2)若点P是x轴上方抛物线上一点,连接OP.①若OP与线段BC交于点D,则当D为OP中点时,求出点P坐标.②在抛物线上是否存在点P,使得∠POC=∠ACO若存在,求出点P坐标;若不存在,请说明理由.20.(8分)已知:如图,△ABC内接于⊙O,AB为直径,∠CBA的平分线交AC于点F,交⊙O于点D,DE⊥AB于点E,且交AC于点P,连结AD.(1)求证:∠DAC=∠DBA;(2)连接CD,若CD﹦3,BD﹦4,求⊙O的半径和DE的长.21.(8分)已知关于x的方程x2+ax+a﹣2=1.(1)求证:不论a取何实数,该方程都有两个不相等的实数根;(2)若该方程的一个根为1,求a的值及该方程的另一根.22.(10分)直线与轴交于点,与轴交于点,抛物线经过两点.(1)求这个二次函数的表达式;(2)若是直线上方抛物线上一点;①当的面积最大时,求点的坐标;②在①的条件下,点关于抛物线对称轴的对称点为,在直线上是否存在点,使得直线与直线的夹角是的两倍,若存在,直接写出点的坐标,若不存在,请说明理由.23.(10分)如图,在平面直角坐标系中,一次函数的图象与反比例函数的图象相交于第一、三象限内的两点,与轴交于点.⑴求该反比例函数和一次函数的解析式;⑵在轴上找一点使最大,求的最大值及点的坐标;⑶直接写出当时,的取值范围.24.(10分)如图,一次函数的图象和反比例函数的图象相交于两点.(1)试确定一次函数与反比例函数的解析式;(2)求的面积;(3)结合图象,直接写出使成立的的取值范围.25.(12分)在平面内,给定不在同一直线上的点A,B,C,如图所示.点O到点A,B,C的距离均等于a(a为常数),到点O的距离等于a的所有点组成图形G,的平分线交图形G于点D,连接AD,CD.(1)求证:AD=CD;(2)过点D作DEBA,垂足为E,作DFBC,垂足为F,延长DF交图形G于点M,连接CM.若AD=CM,求直线DE与图形G的公共点个数.26.如图,AB为⊙O的直径,AC是弦,D为线段AB延长线上一点,过C,D作射线DP,若∠D=2∠CAD=45º.(1)证明:DP是⊙O的切线.(2)若CD=3,求BD的长.
参考答案一、选择题(每题4分,共48分)1、B【解析】根据轴对称图形的概念先求出图形中轴对称图形,再根据中心对称图形的概念得出其中不是中心对称的图形.【详解】A、是轴对称图形,不是中心对称图形,故本选项错误,B、是中心对称图形但不是轴对称图形,故本选项正确,C、不是轴对称图形,也不是中心对称图形,故本选项错误,D、是轴对称图形,也是中心对称图形,故本选项错误.故选:B.本题考查了中心对称图形与轴对称图形的概念,轴对称图形:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,中心对称图形:在同一平面内,如果把一个图形绕某一点旋转,旋转后的图形能和原图形完全重合,那么这个图形就叫做中心对称图形,难度适中.2、C【分析】根据对顶角的定义、同位角的定义、三角形的外角和、角平分线的性质逐项判断即可.【详解】A、由对顶角的定义“如果一个角的两边分别是另一个角两边的反向延长线,且这两个角有公共顶点,那么这两个角是对顶角”可得,对顶角必相等,但相等的角未必是对顶角,此项不是真命题B、只有当两直线平行,同位角必相等,此项不是真命题C、根据内角和定理可知,任意多边形的外角和都为,此项是真命题D、由角平分线的性质可知,角平分线上的点到角的两边距离相等,此项不是真命题故选:C.本题考查了对顶角的定义、同位角的定义、三角形的外角和、角平分线的性质,熟记各定义和性质是解题关键.3、D【分析】根据必然事件指在一定条件下一定发生的事件逐项进行判断即可.【详解】A,B,C选项中,都是可能发生也可能不发生,是随机事件,不符合题意;D是必然事件,符合题意.故选:D.本题考查必然事件的定义,熟练掌握定义是关键.4、B【分析】根据一元二次方程的定义对各选项进行逐一分析即可.【详解】A、方程x+2y=1是二元一次方程,故本选项错误;B、方程x2+5=0是一元二次方程,故本选项正确;C、方程x2+=8是分式方程,故本选项错误;D、方程x(x+3)=x2-1是一元一次方程,故本选项错误.故选B.本题考查的是一元二次方程的定义,熟知只含有一个未知数,并且未知数的最高次数是2的整式方程叫一元二次方程是解答此题的关键.5、D【解析】试题解析:∵OC⊥AB,OC过圆心O点,在中,由勾股定理得:故选D.点睛:垂直于弦的直径平分弦并且平分弦所对的两条弧.6、C【解析】试题分析:直接根据相似三角形面积比等于相似比平方的性质.得出结论:∵,相似比为1:2,∴与的面积的比为1:4.故选C.考点:相似三角形的性质.7、B【分析】根据CD∥AB∥MN,得到△ABE∽△CDE,△ABF∽△MNF,根据相似三角形的性质可知,,即可得到结论.【详解】解:如图,∵CD∥AB∥MN,∴△ABE∽△CDE,△ABF∽△MNF,∴,即,,解得:AB=3.5m,故选:B.本题考查的是相似三角形的应用,相似三角形的判定和性质,熟练掌握相似三角形的判定和性质是解题的关键.8、C【分析】根据相似三角形的面积比等于相似比的平方可直接得出结果.【详解】解:∵两个相似三角形的面积比为9:4,
∴它们的相似比为3:1.
故选:C.此题主要考查了相似三角形的性质:相似三角形的面积比等于相似比的平方.9、A【分析】根据圆周角定理和正切函数的定义,即可求解.【详解】∵∠1与∠2是同弧所对的圆周角,∴∠1=∠2,∴tan∠1=tan∠2=,故选A.本题主要考查圆周角定理和正切函数的定义,把∠1的正切值化为∠2的正切值,是解题的关键.10、A【分析】根据从正面看得到的图形是主视图,可得答案.【详解】从正面看中间的矩形的左右两边是虚的直线,故选:A.本题考查了简单组合体的三视图,从正面看得到的图形是主视图.11、A【分析】先根据相似三角形的判定定理得出Rt△ACE∽Rt△ABD,再根据相似三角形的对应边成比例即可求出BD的长.【详解】解:∵EC∥AB,BD⊥AB,∴EC∥BD,∠ACE=∠ABD=90°,在Rt△ACE∽Rt△ABD中,∠A=∠A,∠ACE=∠ABD=90°,∴Rt△ACE∽Rt△ABD,∴,即,解得BD=6m.故选A.本题考查的是相似三角形的应用,用到的知识点为:相似三角形的对应边成比例.12、D【分析】根据切线长定理,可以证明圆的外切四边形的对边和相等,由此即可解决问题.【详解】∵AB、BC、CD、DA都是⊙O的切线,∴可以假设切点分别为E、H、G、F,∴AF=AE,BE=BH,CH=CG,DG=DF,∴AD+BC=AF+DF+BH+CH=AE+BE+DG+CG=AB+CD,∵AD=2,BC=5,∴AB+CD=AD+BC=7,故选D.本题考查切线的性质、切线长定理等知识,解题的关键是证明圆的外切四边形的对边和相等,属于中考常考题型.二、填空题(每题4分,共24分)13、4【解析】先根据圆锥的侧面展开图,扇形的弧长等于该圆锥的底面圆的周长,求出OA,最后用勾股定理即可得出结论.【详解】设圆锥底面圆的半径为r,∵AC=6,∠ACB=120°,∴=2πr,∴r=2,即:OA=2,在Rt△AOC中,OA=2,AC=6,根据勾股定理得,OC==4,故答案为4.本题考查了扇形的弧长公式,圆锥的侧面展开图,勾股定理,求出OA的长是解本题的关键.14、5π【解析】∵∠1=60°,∴图中扇形的圆心角为300°,又∵扇形的半径为:,∴S阴影=.故答案为.15、【分析】过点A作AF⊥BC于点,过点D作DE⊥AC交AC的延长线于点E,目的得到直角三角形利用三角函数得△AFC三边的关系,再证明△ACF∽△DCE,利用相似三角形性质得出△DCE各边比值,从而得解.【详解】解:过点A作AF⊥BC于点,过点D作DE⊥AC交AC的延长线于点E,∵,∴∠B=∠ACF,sin∠ACF==,设AF=4k,则AC=5k,CD=,由勾股定理得:FC=3k,∵∠ACF=∠DCE,∠AFC=∠DEC=90°,∴△ACF∽△DCE,∴AC:CD=CF:CE=AF:DE,即5k:=3k:CE=4k:DE,解得:CE=,DE=2k,即AE=AC+CE=5k+=,∴在Rt△AED中,DE:AE=2k:=.故答案为:.本题考查三角函数定义、相似三角形的判定与性质,解题关键是构造直角三角形.16、【解析】根据两内项之积等于两外项之积列式整理即可得解.【详解】∵,
∴4(a-b)=3b,
∴4a=7b,
∴,
故答案为:.本题考查了比例的性质,熟记两内项之积等于两外项之积是解题的关键.17、【分析】先判断,则图像经过第一、三象限,根据反比例函数的性质,即可得到答案.【详解】解:∵,∴反比例函数的图象在第一、三象限,且在每个象限内y随x增大而减小,∵,∴,故答案为:.本题考查了反比例函数的图象和性质,解题的关键是掌握时,反比例函数经过第一、三象限,且在每个象限内y随x增大而减小.18、7【分析】根据三角形相似对应线段成比例即可得出答案.【详解】作OE⊥AB与点E,OF⊥CD于点F根据题意可得:△ABO∽△DCO,OE=30cm,OF=14cm∴即解得:CD=7cm故答案为7.本题考查的是相似三角形的性质,注意两三角形相似不仅对应边成比例,对应中线和对应高线也成比例,周长同样成比例,均等于相似比.三、解答题(共78分)19、(2)y=﹣x2+x+2;(2)①点P坐标为(2,3);②存在点P(,﹣2)或(,﹣7)使得∠POC=∠ACO【分析】(2)与x轴、y轴分别交于点B(4,0)、C(0,2),由题意可得即可求解;(2)①过点P作PE∥OC,交BC于点E.根据题意得出△OCD≌△PED,从而得出PE=OC=2,再根据即可求解;②当点P在y轴右侧,PO∥AC时,∠POC=∠ACO.抛物线与x轴交于A,B两点,点A在点B左侧,则点A坐标为(-2,0).则直线AC的解析式为y=2x+2.直线OP的解析式为y=2x,即可求解;当点P在y轴右侧,设OP与直线AC交于点G,当CG=OG时,∠POC=∠ACO,根据等腰三角形三线合一,则CF=OF=2,可得:点G坐标为即可求解.【详解】(2)∵y=﹣x+2与x轴、y轴分别交于点B(4,0)、C(0,2).由题意可得,解得:,∴抛物线的表达式为y=﹣x2+x+2;(2)①如图,过点P作PE∥OC,交BC于点E.∵点D为OP的中点,∴△OCD≌△PED(AAS),∴PE=OC=2,设点P坐标为(m,﹣m2+m+2),点E坐标为(m,﹣m+2),则PE=(﹣m2+m+2)﹣(﹣m+2)=﹣m2+2m=2,解得m2=m2=2.∴点P坐标为(2,3);②存在点P,使得∠POC=∠ACO.理由:分两种情况讨论.如上图,当点P在y轴右侧,PO∥AC时,∠POC=∠ACO.∵抛物线与x轴交于A,B两点,点A在点B左侧,∴点A坐标为(﹣2,0).∴直线AC的解析式为y=2x+2.∴直线OP的解析式为y=2x,解方程组,解得:x=(舍去负值)∴点P坐标为(,﹣2).如图,当点P在y轴右侧,设OP与直线AC交于点G,当CG=OG时∠POC=∠ACO,过点G作GF⊥OC,垂足为F.根据等腰三角形三线合一,则CF=OF=2.∴可得点G坐标为(﹣,2)∴直线OG的解析式为y=﹣2x;把y=﹣2x代入抛物线表达式并解得x=(不合题意值已舍去).∴点P坐标为(,﹣7).综上所述,存在点P(,﹣2)或(,﹣7)使得∠POC=∠ACO.本题考查的是二次函数综合运用,涉及到一次函数、三角形全等、解直角三角形、等腰三角形的性质等,其中(2)②,要注意分类求解,避免遗漏.20、(1)见解析;(2)⊙O的半径为2.5;DE=2.1.【分析】(1)根据角平分线的性质得到∠CBD=∠DBA,根据圆周角定理得到∠DAC=∠CBD,∠ADB=∠AED=90°,等量代换即可得到结论;(2)连接CD,根据等腰三角形的性质得到CD=AD,根据勾股定理得到AB=5,根据三角形的面积公式即可得到结论.【详解】解:(1)证明:∵BD平分∠CBA,∴∠CBD=∠DBA,∵∠DAC与∠CBD都是所对的圆周角,∴∠DAC=∠CBD,∴∠DAC=∠DBA,(2)解:连接CD,∵∠CBD=∠DBA,∴CD=AD=3,∵AB是⊙O的直径∴∠ADB=90°在Rt△ADB中,AB=故⊙O的半径为2.5∵∴;此题考查的是三角形的外接圆与外心及圆周角定理和勾股定理以及三角形面积等知识,熟练利用圆周角定理得出各等量关系是解题关键.21、(1)见解析;(2)a=,x1=﹣【分析】(1)根据根的判别式即可求解;(2)将x=1代入方程x2+ax+a﹣2=1,求出a,再利用根与系数的关系求出方程的另一根.【详解】解:(1)∵△=a2﹣4(a﹣2)=a2﹣4a+8=a2﹣4a+4+4=(a﹣2)2+4≥1,∴不论a取何实数,该方程都有两个不相等的实数根.(2)将x=1代入方程x2+ax+a﹣2=1得1+a+a﹣2=1,解得a=;∴方程为x2+x﹣=1,即2x2+x﹣3=1,设另一根为x1,则1×x1==﹣,∴另一根x1=﹣.此题主要考查一元二次方程根的求解,解题的关键是熟知根的判别式与根与系数的关系.22、(1);(2)①;存在,或【分析】(1)先求得点的坐标,再代入求得b、c的值,即可得二次函数的表达式;(2)作交于点,,,,根据二次函数性质可求得.(3)求出,再根据直线与直线的夹角是的两倍,得出线段的关系,用两点间距离公式求出坐标.【详解】解:如图(1),;(2)作交于点.①设,,则:则时,最大,;(2),则,设,①若:则,∴;②若则,,作于,,与重合,关于对称,∴本题主要考查的是二次函数的综合应用,解答本题主要应用了待定系数法求函数的解析式,三角形面积的巧妙求法,以及对称点之间的关系.23、⑴,;⑵的最大值为,;⑶或.【分析】(1)利用待定系数法,即可得到反比例函数和一次函数的解析式;(2)根据一次函数y1=x+2,求得与y轴的交点P,此交点即为所求;(3)根据AB两点的横坐标及直线与双曲线的位置关系求x的取值范围.【详解】⑴.∵在反比例函数上∴∴反比例函数的解析式为把代入可求得∴.把代入为解得.∴一次函数的解析式为.⑵的最大值就是直线与两坐标轴交点间的距离.设直线与轴的交点为.令,则,解得,∴令,则,,∴∴,∴的最大值为.⑶根据图象的位置和图象交点的坐标可知:当时的取值范围为;或.本题考查了反比例函数与一次函数的交点问题,待定系数法求反比例函数和一次函数的解析式,根据点的坐标求线段长,正确掌握反比例函数的性质是解题的关键.24、(1)反比例函数的解析式为,一次函数的解析式为;(2)8;(3)或.【分析】(1)将点A代入反比例函数中求出反比例函数的解析式,再根据反比例函数求出点B的坐标,最后将A和B的坐标代入一次函数解析式中求出一次函数的解析式;(2)求出一次函数与x轴的交点坐标,再利用割补法得到,即可得出答案;(3)根据图像判断即可得出答案.【详解】解:(1)∵在反比例函数的图象上,∴,则反比例函数的解析式为.将代入,得,∴.将两点的坐标分别代入,得解得则一次函数的解析式为.(2)设一次函数的图象与轴的交点为.在中,令,得,∴,即,则.(3)∵即一次函数的图像在反比例函数的图像的上方∴或.本题考查的是一次函数与反比例函数的综合,难度不高,需
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025人民医院快速石蜡技术考核
- 石家庄市中医院血流感染诊断与抗菌药物选择考核
- 2025贵州银行金融科技相关岗位招聘10人模拟试卷及一套参考答案详解
- 2025广西玉林市北流生态环境局招聘公益性岗位模拟试卷附答案详解(黄金题型)
- 保定市人民医院肌张力障碍手术治疗考核
- 2025广西柳州市城中区委社会工作部招聘专职化城市社区工作者5人模拟试卷附答案详解(突破训练)
- 大学筹建专业知识培训课件
- 大学礼记课件
- 2025年上海市闵行区莘庄实验小学代课教师招聘模拟试卷及答案详解(新)
- 上海市中医院病理急诊诊断考核
- 仿生机器鱼行业规模分析
- 胸闷病人的护理查房
- 中英文员工评估表
- β内酰胺类抗菌药物皮肤试验指导原则(2021版)
- 北京猿人头盖骨失踪之谜
- 华中科技大学教学课件-工程传热学1王晓墨
- YS/T 1018-2015铼粒
- 自驾游免责协议书
- 建设项目安全设施“三同时”检查表
- 第五章-中药指纹图谱课件
- 《汽轮机原理》多级汽轮机
评论
0/150
提交评论