




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2026届湖北省武汉实验外国语学校九年级数学第一学期期末统考模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题3分,共30分)1.如图,△ABC的顶点A、B、C均在⊙O上,若∠ABC+∠AOC=75°,则∠OAC的大小是()A.25° B.50° C.65° D.75°2.已知关于x的一元二次方程x2+3x﹣2=0,下列说法正确的是()A.方程有两个相等的实数根 B.方程有两个不相等的实数根C.没有实数根 D.无法确定3.方程x=x(x-1)的根是()A.x=0 B.x=2 C.x1=0,x2=1 D.x1=0,x2=24.如图,河坝横断面的迎水坡AB的坡比为3:4,BC=6m,则坡面AB的长为()A.6m B.8m C.10m D.12m5.已知如图,则下列4个三角形中,与相似的是()A. B.C. D.6.如图,在矩形ABCD中,BC=2,AE⊥BD,垂足为E,∠BAE=30°,那么△ECD的面积是()A.2 B. C. D.7.如今网上购物已经成为一种时尚,某网店“双十一”全天交易额逐年增长,2015年交易额为40万元,2017年交易额为48.4万元,设2015年至2017年“双十一”交易额的年平均增长率为,则根据题意可列方程为()A. B.C. D.8.如图,一人站在两等高的路灯之间走动,为人在路灯照射下的影子,为人在路灯照射下的影子.当人从点走向点时两段影子之和的变化趋势是()A.先变长后变短 B.先变短后变长C.不变 D.先变短后变长再变短9.若点A(﹣2,y1),B(﹣1,y2),C(4,y3)都在二次函数的图象上,则下列结论正确的是()A. B. C. D.10.已知反比例函数y=kx的图象经过点P(﹣2,3A.(﹣1,﹣6) B.(1,6) C.(3,﹣2) D.(3,2)二、填空题(每小题3分,共24分)11.如图,在的同侧,,点为的中点,若,则的最大值是_____.12.在二次根式中的取值范围是__________.13.如图,抛物线y=﹣x2﹣2x+3与x轴交于点A、B,把抛物线在x轴及其上方的部分记作C1,将C1关于点B的中心对称得C2,C2与x轴交于另一点C,将C2关于点C的中心对称得C3,连接C1与C3的顶点,则图中阴影部分的面积为.14.如图,四边形ABCD中,∠BAD=∠BCD=90°,∠B=45°,DE⊥AC于E交AB于F,若BC=2CD,AE=2,则线段BF=______.15.若圆锥的底面周长是10,侧面展开后所得的扇形圆心角为90°,则该圆锥的侧面积是__________。16.如图,PA、PB是⊙O的两条切线,点A、B为切点,点C在⊙O上,且∠ACB=55°,则∠APB=___°.17.若m+n=3,则2m2+4mn+2n2-6的值为________.18.若a、b、c、d满足ab=cd=三、解答题(共66分)19.(10分)(1)(学习心得)于彤同学在学习完“圆”这一章内容后,感觉到一些几何问题如果添加辅助圆,运用圆的知识解决,可以使问题变得非常容易.例如:如图1,在中,,是外一点,且,求的度数.若以点为圆心,为半径作辅助,则、必在上,是的圆心角,而是圆周角,从而可容易得到=________.(2)(问题解决)如图2,在四边形中,,,求的度数.(3)(问题拓展)如图3,是正方形的边上两个动点,满足.连接交于点,连接交于点,连接交于点,若正方形的边长为2,则线段长度的最小值是_______.20.(6分)富平因取“富庶太平”之意而得名,是华夏文明重要发祥地之一.某班举行关于“美丽的富平”的演讲活动.小明和小丽都想第一个演讲,于是他们通过做游戏来决定谁第一个来演.讲游戏规则是:在一个不透明的袋子中有一个黑球a和两个白球b、c,(除颜色外其它均相同),小丽从袋子中摸出一个球,放回后搅匀,小明再从袋子中摸出一个球,若两次摸到的球颜色相同,则小丽获胜,否则小明获胜,请你用树状图或列表的方法分别求出小丽与小明获胜的概率,并说明这个游戏规则对双方公平吗?21.(6分)在Rt△ABC中,∠ACB=90°,AC=BC=3,点D是斜边AB上一动点(点D与点A、B不重合),连接CD,将CD绕点C顺时针旋转90°得到CE,连接AE,DE.(1)求△ADE的周长的最小值;(2)若CD=4,求AE的长度.22.(8分)如图,点A、B、C在⊙O上,用无刻度的直尺画图.(1)在图①中,画一个与∠B互补的圆周角;(2)在图②中,画一个与∠B互余的圆周角.23.(8分)如图,在平面直角坐标系中,双曲线和直线y=kx+b交于A,B两点,点A的坐标为(﹣3,2),BC⊥y轴于点C,且OC=6BC.(1)求双曲线和直线的解析式;(2)直接写出不等式的解集.24.(8分)在平面直角坐标系中,对“隔离直线”给出如下定义:点是图形上的任意一点,点是图形上的任意一点,若存在直线:满足且,则称直线:是图形与的“隔离直线”,如图,直线:是函数的图像与正方形的一条“隔离直线”.
(1)在直线①,②,③,④中,是图函数的图像与正方形的“隔离直线”的为.(2)如图,第一象限的等腰直角三角形的两腰分别与坐标轴平行,直角顶点的坐标是,⊙O的半径为,是否存在与⊙O的“隔离直线”?若存在,求出此“隔离直线”的表达式:若不存在,请说明理由;(3)正方形的一边在轴上,其它三边都在轴的左侧,点是此正方形的中心,若存在直线是函数的图像与正方形的“隔离直线”,请直接写出的取值范围.25.(10分)小淇准备利用38m长的篱笆,在屋外的空地上围成三个相连且面积相等的矩形花园.围成的花园的形状是如图所示的矩形CDEF,矩形AEHG和矩形BFHG.若整个花园ABCD(AB>BC)的面积是30m2,求HG的长.26.(10分)已知二次函数.(1)当时,求函数图象与轴的交点坐标;(2)若函数图象的对称轴与原点的距离为2,求的值.
参考答案一、选择题(每小题3分,共30分)1、C【分析】根据圆周角定理得出∠AOC=2∠ABC,求出∠AOC=50°,再根据等腰三角形的性质和三角形内角和定理求出即可.【详解】解:∵根据圆周角定理得:∠AOC=2∠ABC,∵∠ABC+∠AOC=75°,∴∠AOC=×75°=50°,∵OA=OC,∴∠OAC=∠OCA=(180°﹣∠AOC)=65°,故选C.本题考查了圆周角定理,等腰三角形的性质,三角形内角和定理等知识点,能求出∠AOC是解此题的关键.2、B【分析】根据一元二次方程的构成找出其二次项系数、一次项系数以及常数项,再根据根的判别式△=17>0,即可得出方程有两个不相等的实数根,此题得解.【详解】解:在一元二次方程x2+3x﹣2=0中,二次项系数为1,一次项系数为3,常数项为﹣2,∵△=32﹣4×1×(﹣2)=17>0,∴方程x2+3x﹣2=0有两个不相等的实数根.故选:B.本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式∆=b2﹣4ac与根的关系,熟练掌握根的判别式与根的关系式解答本题的关键.当∆>0时,一元二次方程有两个不相等的实数根;当∆=0时,一元二次方程有两个相等的实数根;当∆<0时,一元二次方程没有实数根.3、D【详解】解:先移项,再把方程左边分解得到x(x﹣1﹣1)=0,原方程化为x=0或x﹣1﹣1=0,解得:x1=0;x2=2故选D.本题考查因式分解法解一元二次方程,掌握因式分解的技巧进行计算是解题关键.4、C【分析】迎水坡AB的坡比为3:4得出,再根据BC=6m得出AC的值,再根据勾股定理求解即可.【详解】由题意得∴∴故选:C.本题考查解直角三角形的应用,把坡比转化为三角函数值是关键.5、C【分析】根据相似三角形的判定定理逐一分析即可.【详解】解:∵AB=AC=6,∠B=75°∴∠B=∠C=75°∴∠A=180°-∠B-∠C=30°,对于A选项,如下图所示∵,但∠A≠∠E∴与△EFD不相似,故本选项不符合题意;对于B选项,如下图所示∵DE=DF=EF∴△DEF是等边三角形∴∠E=60°∴,但∠A≠∠E∴与△EFD不相似,故本选项不符合题意;对于C选项,如下图所示∵,∠A=∠E=30°∴∽△EFD,故本选项符合题意;对于D选项,如下图所示∵,但∠A≠∠D∴与△DEF不相似,故本选项不符合题意;故选C.此题考查的是相似三角形的判定,掌握有两组对应边对应成比例,且夹角相等的两个三角形相似是解决此题的关键.6、D【分析】根据已知条件,先求Rt△AED的面积,再证明△ECD的面积与它相等.【详解】如图:过点C作CF⊥BD于F.∵矩形ABCD中,BC=2,AE⊥BD,∠BAE=30°.∴∠ABE=∠CDF=60°,AB=CD,AD=BC=2,∠AEB=∠CFD=90°,∠AED=30°,∴△ABE≌△CDF.∴AE=CF.∴S△AED=EDAE,S△ECD=EDCF.∴S△AED=S△CDE∵AE=1,DE=,∴△ECD的面积是.故答案选:D.本题考查了矩形的性质与含30度角的直角三角形相关知识,解题的关键是熟练的掌握矩形的性质与含30度角的直角三角形并能运用其知识解题.7、C【分析】由2015年至2017年“双十一”交易额的年平均增长率为x,根据2015年及2017年该网店“双十一”全天交易额,即可得出关于x的一元二次方程,从而得出结论.【详解】解:由2015年至2017年“双十一”交易额的年平均增长率为x,根据题意得:.故选C.本题考查了一元二次方程的应用,找准等量关系,正确列一元二次方程是解题的关键.8、C【分析】连接DF,由题意易得四边形CDFE为矩形.由DF∥GH,可得.又AB∥CD,得出,设=a,DF=b(a,b为常数),可得出,从而可以得出,结合可将DH用含a,b的式子表示出来,最后得出结果.【详解】解:连接DF,已知CD=EF,CD⊥EG,EF⊥EG,∴四边形CDFE为矩形.∴DF∥GH,∴又AB∥CD,∴.设=a,DF=b,∴,∴∴∴GH=,∵a,b的长是定值不变,∴当人从点走向点时两段影子之和不变.故选:C.本题考查了相似三角形的应用:利用杆或直尺测量物体的高度就是利用杆或直尺的高(长)作为三角形的边,利用视点和盲区的知识构建相似三角形,用相似三角形对应边的比相等的性质求物体的高度.9、D【分析】先利用顶点式得到抛物线对称轴为直线x=-1,再比较点A、B、C到直线x=-1的距离,然后根据二次函数的性质判断函数值的大小.【详解】解:二次函数的图象的对称轴为直线x=-1,a=-1<0,所以该函数开口向下,且到对称轴距离越远的点对应的函数值越小,A(﹣2,y1)距离直线x=-1的距离为1,B(﹣1,y2)距离直线x=-1的距离为0,C(4,y3)距离距离直线x=-1的距离为5.B点距离对称轴最近,C点距离对称轴最远,所以,故选:D.本题考查了二次函数图象上点的坐标特征.熟练掌握二次函数的性质是解决本题的关键.10、C【解析】先根据点(-2,3),在反比例函数y=k的图象上求出k的值,再根据k=xy的特点对各选项进行逐一判断.【详解】∵反比例函数y=kx的图象经过点(﹣2,3)∴k=2×3=-6,A.∵(-6)×(-1)=6≠-6,∴此点不在反比例函数图象上;B.∵1×6=6≠-6,∴此点不在反比例函数图象上;C.∵3×(-2)=-6,∴此点在反比例函数图象上;D.∵3×2=6≠-6,∴此点不在反比例函数图象上。故答案选:C.本题考查的知识点是反比例函数图像上点的坐标特点,解题的关键是熟练的掌握反比例函数图像上点的坐标特点.二、填空题(每小题3分,共24分)11、14【分析】如图,作点A关于CM的对称点A′,点B关于DM的对称点B′,证明△A′MB′为等边三角形,即可解决问题.【详解】解:如图,作点关于的对称点,点关于的对称点.,,,,,为等边三角形,的最大值为,故答案为.本题考查等边三角形的判定和性质,两点之间线段最短,解题的关键是学会添加常用辅助线,学会利用两点之间线段最短解决最值问题12、x<1【解析】试题解析:若二次根式有意义,则<2,解得x<1.故答案为:x<1.本题考查二次根式及分式有意义的条件;用到的知识点为:二次根式有意义,被开方数为非负数;分式有意义,分母不为2.13、1【分析】将x轴下方的阴影部分沿对称轴分成两部分补到x轴上方,即可将不规则图形转换为规则的长方形,则可求出.【详解】∵抛物线与轴交于点、,∴当时,则,解得或,则,的坐标分别为(-3,0),(1,0),∴的长度为4,从,两个部分顶点分别向下作垂线交轴于、两点.根据中心对称的性质,轴下方部分可以沿对称轴平均分成两部分补到与,如图所示,阴影部分转化为矩形,根据对称性,可得,则,利用配方法可得,则顶点坐标为(-1,4),即阴影部分的高为4,.故答案为:1.本题考查了中心对称的性质、配方法求抛物线的顶点坐标及求抛物线与x轴交点坐标,解题关键是将不规则图形通过对称转换为规则图形,求阴影面积经常要使用转化的数学思想.14、【分析】连接,延长BA,CD交于点,根据∠BAD=∠BCD=90°可得点A、B、C、D四点共圆,根据圆周角定理可得,根据DE⊥AC可证明△AED∽△BCD,可得,利用勾股定理可求出AD的长,由∠ABC=45°可得△ABG为等腰直角三角形,进而可得△ADG是等腰直角三角形,即可求出AG、DG的长,根据BC=2CD可求出CD、BC、AB的长,根据,可证明△AED∽△FAD,根据相似三角形的性质可求出AF的长,即可求出BF的长.【详解】连接,延长BA,CD交于点,∵,∴四点共圆,∴,∵,∴,∴△AED∽△BCD,∴,∴,∴AD==,∵∴是等腰直角三角形,∵BC=2CD,∴∴CD=DG,∵,∴是等腰直角三角形,∴,∴,∵,,∴△AED∽△FAD,∴,∴∴.本题考查圆周角定理、勾股定理及相似三角形的判定与性质,如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似;如果两个三角形的两组对应边的比相等,并且对应的夹角相等,那么这两个三角形相似;如果两个三角形的三组对应边的比相等,那么这两个三角形相似;熟练掌握相似三角形的判定定理是解题关键.15、100π【分析】圆锥侧面展开图的弧长=底面周长,利用弧长公式即可求得圆锥母线长,那么圆锥的侧面积=底面周长×母线长÷1.【详解】解:设扇形半径为R.
∵底面周长是10π,扇形的圆心角为90°,
∴10π=×1πR,∴R=10,
∴侧面积=×10π×10=100π,
故选:C.本题利用了圆的周长公式和扇形面积公式求解.16、70°【分析】连接OA、OB,根据圆周角定理求得∠AOB,由切线的性质求出∠OAP=∠OBP=90°,再由四边形的内角和等于360°,即可得出答案【详解】解:连接OA、OB,∠ACB=55°,∴∠AOB=110°∵PA、PB是⊙O的两条切线,点A、B为切点,∴∠OAP=∠OBP=90°∵∠APB+∠OAP+∠AOB+∠OBP=360°∴∠APB=180°-(∠OAP+∠AOB+∠OBP)=70°故答案为:70本题考查了切线的性质、四边形的内角和定理以及圆周角定理,利用切线性质和圆周角定理求出角的度数是解题的关键17、1【解析】原式=2(m2+2mn+n2)-6,=2(m+n)2-6,=2×9-6,=1.18、3【解析】根据等比性质求解即可.【详解】∵ab∴a+cb+d=a故答案为:34本题考查了比例的性质,主要利用了等比性质.等比性质:在一个比例等式中,两前项之和与两后项之和的比例与原比例相等.对于实数a,b,c,d,且有b≠0,d≠0,如果ab=c三、解答题(共66分)19、(1)45;(2)25°;(3)【解析】(1)利用同弦所对的圆周角是所对圆心角的一半求解.(2)由A、B、C、D共圆,得出∠BDC=∠BAC,(3)根据正方形的性质可得AB=AD=CD,∠BAD=∠CDA,∠ADG=∠CDG,然后利用“边角边”证明△ABE和△DCF全等,根据全等三角形对应角相等可得∠1=∠2,利用“SAS”证明△ADG和△CDG全等,根据全等三角形对应角相等可得∠2=∠3,从而得到∠1=∠3,然后求出∠AHB=90°,取AB的中点O,连接OH、OD,根据直角三角形斜边上的中线等于斜边的一半可得OH=AB=1,利用勾股定理列式求出OD,然后根据三角形的三边关系可知当O、D、H三点共线时,DH的长度最小.【详解】(1)如图1,∵AB=AC,AD=AC,∴以点A为圆心,点B、C、D必在⊙A上,∵∠BAC是⊙A的圆心角,而∠BDC是圆周角,∴∠BDC=∠BAC=45°,故答案是:45;(2)如图2,取BD的中点O,连接AO、CO.∵∠BAD=∠BCD=90°,∴点A、B、C、D共圆,∴∠BDC=∠BAC,∵∠BDC=25°,∴∠BAC=25°;(3)在正方形ABCD中,AB=AD=CD,∠BAD=∠CDA,∠ADG=∠CDG,在△ABE和△DCF中,,∴△ABE≌△DCF(SAS),∴∠1=∠2,在△ADG和△CDG中,,∴△ADG≌△CDG(SAS),∴∠2=∠3,∴∠1=∠3,∵∠BAH+∠3=∠BAD=90°,∴∠1+∠BAH=90°,∴∠AHB=180°−90°=90°,取AB的中点O,连接OH、OD,则OH=AO=AB=1,在Rt△AOD中,OD=,根据三角形的三边关系,OH+DH>OD,∴当O、D、H三点共线时,DH的长度最小,最小值=OD−OH=−1.本题主要考查了圆的综合题,需要掌握垂径定理、圆周角定理、等腰直角三角形的性质以及勾股定理等知识,难度偏大,解题时,注意辅助线的作法.20、小丽为,小军为,这个游戏不公平,见解析【分析】画出树状图,得出总情况数及两次模到的球颜色相同和不同的情况数,即可得小丽与小明获胜的概率,根据概率即可得游戏是否公平.【详解】根据题意两图如下:共有种等情况数,其中两次模到的球颜色相同的情况数有种,不同的有种,小丽获胜的概率是小军获胜的概率是,所以这个游戏不公平.本题考查游戏公平性的判断,判断游戏的公平性要计算每个参与者获胜的概率,概率相等则游戏公平,否则游戏不公平,用到的知识点为:概率=所求情况数与总情况数之比.21、(1)6+;(2)3﹣或3+【分析】(1)根据勾股定理得到AB=AC=6,根据全等三角形的性质得到AE=BD,当DE最小时,△ADE的周长最小,过点C作CF⊥AB于点F,于是得到结论;(2)当点D在CF的右侧,当点D在CF的左侧,根据勾股定理即可得到结论【详解】解:(1)∵在Rt△ABC中,∠ACB=90°,AC=BC=3∴AB=AC=6,∵∠ECD=∠ACB=90°,∴∠ACE=∠BCD,在△ACE与△BCD中,,∴△ACE≌△BCD(SAS),∴AE=BD,∴△ADE的周长=AE+AD+DE=AB+DE,∴当DE最小时,△ADE的周长最小,过点C作CF⊥AB于点F,当CD⊥AB时,CD最短,等于3,此时DE=3,∴△ADE的周长的最小值是6+3;(2)当点D在CF的右侧,∵CF=AB=3,CD=4,∴DF=,∴AE=BD=BF﹣DF=3﹣;当点D在CF的左侧,同理可得AE=BD=3+,综上所述:AE的长度为3﹣或3+.本题考查旋转的性质,全等三角形的判定与性质,勾股定理,解题的关键是熟练运用旋转的性质以及全等三角形的判定与性质.22、(1)见解析;(2)见解析【解析】试题分析:圆内接四边形的对角互补.直径所对的圆周角是直角.试题解析:如图①,即为所求.如图②,即为所求.点睛:圆内接四边形的对角互补.直径所对的圆周角是直角.23、(1)双曲线的解析式为,直线的解析式为y=﹣2x﹣4;(2)﹣3<x<0或x>1.【分析】(1)将A坐标代入反比例解析式中求出m的值,确定出反比例解析式,根据OC=6BC,且B在反比例图象上,设B坐标为(a,﹣6a),代入反比例解析式中求出a的值,确定出B坐标,将A与B坐标代入一次函数解析式中求出k与b的值,即可确定出一次函数解析式;(2)根据一次函数与反比例函数的两交点A与B的横坐标,以及0,将x轴分为四个范围,找出反比例图象在一次函数图象上方时x的范围即可.【详解】(1)∵点A(﹣3,2)在双曲线上,∴,解得m=﹣6,∴双曲线的解析式为,∵点B在双曲线上,且OC=6BC,设点B的坐标为(a,﹣6a),∴,解得:a=±1(负值舍去),∴点B的坐标为(1,﹣6),∵直线y=kx+b过点A,B,∴,解得:,∴直线的解析式为y=﹣2x﹣4;(2)根据图象得:不等式的解集为﹣3<x<0或x>1.24、(1)①④;(2);(3)或【分析】(1)根据的“隔离直线”的定义即可解决问题;(2)存在,连接,求得与垂直且过的直接就是“隔离直线”,据此即可求解;(3)分两种情形正方形在x轴上方以及在x轴下方时,分别求出正方形的一个顶点在直线上时的t的值即可解决问题.【详解】(1)根据的“隔离直线”的定义可知,是图1函数的图象与正方形OABC的“隔离直线”;直线也是图1函数的图象与正方形OABC的“隔离直线”;而与不满足图1函数的图象与正方形OABC的“隔离直线”的条件;
故答案为:①④;(2)存在,理由如
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 北京市中医院腹腔镜结直肠癌根治术术者分级认证考核
- 2025吉林省矿业集团有限责任公司遴选31人考前自测高频考点模拟试题及答案详解(新)
- 秦皇岛市中医院护理学科团队建设考核
- 2025年芜湖经济技术开发区招聘公办幼儿园教职工26人模拟试卷及答案详解(考点梳理)
- 2025年上半年都江堰市卫生健康局所属事业单位公开考试招聘工作人员(78人)模拟试卷附答案详解
- 2025湖南省怀化学院高层次人才公开招聘100人模拟试卷含答案详解
- 2025年浙江宁波北仑区人民医院医疗健康服务集团霞浦院区招聘编外人员1人考前自测高频考点模拟试题附答案详解(模拟题)
- 上海市人民医院影像主任医师资格认证
- 重庆市人民医院推拿新技术应用考核
- 邢台市人民医院内镜活检管道刷洗与清洁度测试考核
- 男朋友男德守则100条
- 食品安全风险管控日管控检查清单
- 乡村振兴汇报模板
- 津16D19 天津市住宅区及住宅建筑内光纤到户通信设施标准设计图集 DBJT29-205-2016
- 医院感染科室院感管理委员会会议记录
- 高分子物理-第2章-聚合物的凝聚态结构课件
- CNAS体系基础知识培训课件
- 三字经全文带拼音打印版带翻译
- 河蟹健康养殖与常见疾病防治技术课件
- 儿童牙外伤讲稿
- GB∕T 41491-2022 配网用复合材料杆塔
评论
0/150
提交评论