四川省遂宁市船山区第二中学2026届数学九上期末考试试题含解析_第1页
四川省遂宁市船山区第二中学2026届数学九上期末考试试题含解析_第2页
四川省遂宁市船山区第二中学2026届数学九上期末考试试题含解析_第3页
四川省遂宁市船山区第二中学2026届数学九上期末考试试题含解析_第4页
四川省遂宁市船山区第二中学2026届数学九上期末考试试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

四川省遂宁市船山区第二中学2026届数学九上期末考试试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每题4分,共48分)1.如图,在平行四边形中,,,那么的值等于()A. B. C. D.2.已知,点是线段上的黄金分割点,且,则的长为()A. B. C. D.3.如图是某零件的模型,则它的左视图为()A. B. C. D.4.在下列命题中,正确的是A.对角线相等的四边形是平行四边形B.有一个角是直角的四边形是矩形C.有一组邻边相等的平行四边形是菱形D.对角线互相垂直平分的四边形是正方形5.方程x2﹣9=0的解是()A.3 B.±3 C.4.5 D.±4.56.如图,已知圆锥侧面展开图的扇形面积为65cm2,扇形的弧长为10cm,则圆锥母线长是()A.5cm B.10cm C.12cm D.13cm7.关于反比例函数y=,下列说法中错误的是()A.它的图象是双曲线B.它的图象在第一、三象限C.y的值随x的值增大而减小D.若点(a,b)在它的图象上,则点(b,a)也在它的图象上8.如图,若绕点按逆时针方向旋转后能与重合,则().A. B. C. D.9.分别以等边三角形的三个顶点为圆心,以边长为半径画弧,得到封闭图形就是莱洛三角形,如图,已知等边,,则该莱洛三角形的面积为()A. B. C. D.10.在课外实践活动中,甲、乙、丙、丁四个小组用投掷一元硬币的方法估算正面朝上的概率,其实验次数分别为10次、50次、100次,200次,其中实验相对科学的是()A.甲组 B.乙组 C.丙组 D.丁组11.如图,在平面直角坐标系中,点,将沿轴向右平移得,此时四边形是菱形,则点的坐标是()A. B. C. D.12.为了比较甲乙两足球队的身高谁更整齐,分别量出每人身高,发现两队的平均身高一样,甲、乙两队的方差分别是1.7、2.4,则下列说法正确的是()A.甲、乙两队身高一样整齐 B.甲队身高更整齐C.乙队身高更整齐 D.无法确定甲、乙两队身高谁更整齐二、填空题(每题4分,共24分)13.关于x的一元二次方程的一个根为1,则方程的另一根为______.14.某同学想要计算一组数据105,103,94,92,109,85的方差,在计算平均数的过程中,将这组数据中的每一个数都减去100,得到一组新数据5,3,-6,-8,9,-15,记这组新数据的方差为,则______(填“>”、“=”或“<”).15.如图,圆心都在x轴正半轴上的半圆O1,半圆O2,…,半圆On均与直线l相切,设半圆O1,半圆O2,…,半圆On的半径分别是r1,r2,…,rn,则当直线l与x轴所成锐角为30时,且r1=1时,r2017=_______.16.如图,D是△ABC的边AC上的一点,连接BD,已知∠ABD=∠C,AB=6,AD=4,求线段CD的长.17.已知x=﹣1是方程x2+ax+4=0的一个根,则方程的另一个根为_____.18.关于的一元二次方程有两个不相等实数根,则的取值范围是________.三、解答题(共78分)19.(8分)如图,反比例函数y=(x>0)与直线AB:交于点C,点P是反比例函数图象上一点,过点P作x轴的垂线交直线AB于点Q,连接OP,OQ.(1)求反比例函数的解析式;(2)点P在反比例函数图象上运动,且点P在Q的上方,当△POQ面积最大时,求P点坐标.20.(8分)解方程:;二次函数图象经过点,当时,函数有最大值,求二次函数的解析式.21.(8分)如图,灯塔在港口的北偏东方向上,且与港口的距离为80海里,一艘船上午9时从港口出发向正东方向航行,上午11时到达处,看到灯塔在它的正北方向.试求这艘船航行的速度.(结果保留根号)22.(10分)如图,已知抛物线与轴相交于、两点,与轴相交于点,若已知点的坐标为.(1)求抛物线的解析式;(2)求线段所在直线的解析式;(3)在抛物线的对称轴上是否存在点,使为等腰三角形?若存在,求出符合条件的点坐标;若不存在,请说明理由.23.(10分)已知正比例函数y=k1x(k1≠0)与反比例函数的图象交于A、B两点,点A的坐标为(2,1).(1)求正比例函数、反比例函数的表达式;(2)求点B的坐标.24.(10分)已知一个二次函数的图象经过点、和三点.(1)求此二次函数的解析式;(2)求此二次函数的图象的对称轴和顶点坐标.25.(12分)如图,在中,是上的高,.(1)求证:;(2)若,求的长.26.有2部不同的电影A、B,甲、乙、丙3人分别从中任意选择1部观看.(1)求甲选择A部电影的概率;(2)求甲、乙、丙3人选择同一部电影的概率(请用画树状图的方法给出分析过程,并求出结果)

参考答案一、选择题(每题4分,共48分)1、D【分析】由题意首先过点A作AF⊥DB于F,过点D作DE⊥AB于E,设DF=x,然后利用勾股定理与含30°角的直角三角形的性质,表示出个线段的长,再由三角形的面积,求得x的值,继而求得答案.【详解】解:过点A作AF⊥DB于F,过点D作DE⊥AB于E.设DF=x,∵∠ADB=60°,∠AFD=90°,∴∠DAF=30°,则AD=2x,∴AF=x,又∵AB:AD=3:2,∴AB=3x,∴,∴,解得:,∴.故选:D.本题考查平行四边形的性质和三角函数以及勾股定理.解题时注意掌握辅助线的作法以及注意数形结合思想与方程思想的应用.2、A【分析】根据黄金分割点的定义和得出,代入数据即可得出AP的长度.【详解】解:由于P为线段AB=2的黄金分割点,且,

则.

故选:A.本题考查了黄金分割.应该识记黄金分割的公式:较短的线段=原线段的,较长的线段=原线段的.3、D【分析】找到从左面看所得到的图形即可,注意所有的看到的棱都应表现在视图中.【详解】从左面看去,是两个有公共边的矩形,如图所示:故选:D.本题考查了三视图的知识,左视图是从物体的左面看得到的视图.视图中每一个闭合的线框都表示物体上的一个平面,而相连的两个闭合线框常不在一个平面上.4、C【分析】根据平行四边形、矩形、菱形、正方形的判定方法逐项分析解答即可.【详解】解:A、∵等腰梯形的对角线相等,但不是平行四边形,∴应对角线相等的四边形不一定是平行四边形,故不正确;B、∵有一个角是直角的四边形可能是矩形、直角梯形,∴有一个角是直角的四边形不一定是矩形,故不正确;C、∵有一组邻边相等的平行四边形是菱形,故正确;D、对角线互相垂直平分的四边形是菱形,故不正确.故选:C.本题考查了平行四边形、矩形、菱形、正方形的判定方法的理解,熟练掌握平行四边形、矩形、菱形、正方形的判定方法的判定方法是解答本题的关键.5、B【解析】根据直接开方法即可求出答案.【详解】解:∵x2﹣9=0,∴x=±3,故选:B.本题考察了直接开方法解方程,注意开方时有两个根,别丢根6、D【解析】∴选D7、C【分析】根据反比例函数y=的图象上点的坐标特征,以及该函数的图象的性质进行分析、解答.【详解】A.反比例函数的图像是双曲线,正确;B.k=2>0,图象位于一、三象限,正确;C.在每一象限内,y的值随x的增大而减小,错误;D.∵ab=ba,∴若点(a,b)在它的图像上,则点(b,a)也在它的图像上,故正确.故选C.本题主要考查反比例函数的性质.注意:反比例函数的增减性只指在同一象限内.8、D【分析】根据旋转的性质知,,然后利用三角形内角和定理进行求解.【详解】∵绕点按逆时针方向旋转后与重合,∴,,∴,故选D.本题考查了旋转的性质,三角形内角和定理,熟知旋转角的定义与旋转后对应边相等是解题的关键.9、D【分析】莱洛三角形的面积为三个扇形的面积相加,再减去两个等边三角形的面积,代入已知数据计算即可.【详解】解:如图所示,作AD⊥BC交BC于点D,∵△ABC是等边三角形,∴AB=AC=BC=2,∠BAC=∠ABC=∠ACB=60°∵AD⊥BC,∴BD=CD=1,AD=,∴,∴莱洛三角形的面积为故答案为D.本题考查了不规则图形的面积的求解,能够得出“莱洛三角形的面积为三个扇形的面积相加,再减去两个等边三角形的面积”是解题的关键.10、D【解析】试题分析:大量反复试验时,某事件发生的频率会稳定在某个常数的附近,这个常数就叫做事件概率的估计值.根据模拟实验的定义可知,实验相对科学的是次数最多的丁组.故答案选D.考点:事件概率的估计值.11、A【分析】首先由平移的性质,得出点C的纵坐标,OA=DE=3,AD=OE,然后根据勾股定理得出CD,再由菱形的性质得出点C的横坐标,即可得解.【详解】由已知,得点C的纵坐标为4,OA=DE=3,AD=OE∴∵四边形是菱形∴AD=BC=CD=5∴点C的横坐标为5∴点C的坐标为故答案为A.此题主要考查平面直角坐标系中,根据平移和菱形的性质求解点坐标,熟练掌握,即可解题.12、B【解析】根据方差的意义可作出判断,方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.【详解】∵S甲=1.7,S乙=2.4,∴S甲<S乙,∴甲队成员身高更整齐;故选B.此题考查方差,掌握波动越小,数据越稳定是解题关键二、填空题(每题4分,共24分)13、-1【详解】设一元二次方程x2+2x+a=0的一个根x1=1,另一根为x2,则,x1+x2=-=-2,解得,x2=-1.故答案为-1.14、=【分析】根据一组数据中的每一个数据都加上或减去同一个非零常数,那么这组数据的波动情况不变,即方差不变,即可得出答案.【详解】解:∵一组数据中的每一个数据都加上或减去同一个非零常数,它的平均数都加上或减去这一个常数,两数进行相减,方差不变,∴故答案为:=.本题考查的知识点是数据的平均数与方差,需要记忆的是如果将一组数据中的每一个数据都加上同一个非零常数,那么这组数据的方差不变,但平均数要变,且平均数增加这个常数.15、【详解】分别作O1A⊥l,O2B⊥l,O3C⊥l,如图,∵半圆O1,半圆O2,…,半圆On与直线l相切,∴O1A=r1,O2B=r2,O3C=r3,∵∠AOO1=30°,∴OO1=2O1A=2r1=2,在Rt△OO2B中,OO2=2O2B,即2+1+r2=2r2,∴r2=3,在Rt△OO2C中,OO3=2O2C,即2+1+2×3++r3=2r3,∴r3=9=32,同理可得r4=27=33,所以r2017=1.故答案为1.本题考查了切线的性质:圆的切线垂直于经过切点的半径.运用切线的性质来进行计算或论证,常通过作辅助线连接圆心和切点,利用垂直构造直角三角形解决有关问题.也考查了从特殊到一般的方法解决规律型问题.16、1.【分析】由已知角相等,加上公共角,得到三角形ABD与三角形ACB相似,由相似得比例,将AB与AD长代入即可求出CD的长.【详解】在△ABD和△ACB中,∠ABD=∠C,∠A=∠A,∴△ABD∽△ACB,∴,∵AB=6,AD=4,∴,则CD=AC﹣AD=9﹣4=1.考点:相似三角形的判定与性质.17、﹣4【分析】根据根与系数的关系:即可求出答案.【详解】设另外一根为x,由根与系数的关系可知:﹣x=4,∴x=﹣4,故答案为:﹣4本题考查根与系数,解题的关键是熟练运用根与系数的关系,本题属于基础题型.18、且【解析】一元二次方程的定义及判别式的意义可得a≠1且△=b2-4ac=(-3)2-4×a×1=9-4a>1,解不等式组即可求出a的取值范围.【详解】∵关于x的一元二次方程ax2-3x+1=1有两个不相等的实数根,

∴a≠1且△=b2-4ac=(-3)2-4×a×1=9-4a>1,

解得:a<且a≠1.

故答案是:a<且a≠1.考查了根的判别式.一元二次方程ax2+bx+c=1(a≠1)的根与△=b2-4ac有如下关系:(1)△>1⇔方程有两个不相等的实数根;(2)△=1⇔方程有两个相等的实数根;(3)△<1⇔方程没有实数根.三、解答题(共78分)19、(1)y=;(2)P(2,2)【分析】(1)点C在一次函数上得:m=,点C在反比例函数上:,求出k即可.(2)动点P(m,),则点Q(m,﹣2),PQ=-+2,则△POQ面积=,利用-公式求即可.【详解】解:(1)将点C的坐标代入一次函数表达式得:m=,故点C,将点C的坐标代入反比例函数表达式得:,解得k=4,故反比例函数表达式为y=;(2)设点P(m,),则点Q(m,﹣2),则△POQ面积=PQ×xP=(﹣m+2)•m=﹣m2+m+2,∵﹣<0,故△POQ面积有最大值,此时m==2,故点P(2,2).本题考查反比例函数解析式,及面积最大值问题,关键是会利用一次函数求点C坐标,利用动点P表示Q,求出面积函数,用对称轴公式即可解决问题.20、;【分析】(1)根据题意利用因式分解法进行一元二次方程求解;(2)根据题意确定出顶点坐标,设出顶点形式,将(4,-3)代入即可确定出解析式.【详解】解:;解:由题意可知此抛物线顶点坐标为,设其解析式为,将点代入得:,解得:,此抛物线解析式为:.考查一元二次方程求解以及待定系数法求二次函数解析式,熟练掌握一元二次方程的解法和待定系数法求二次函数解析式是解本题的关键.21、海里/时【分析】利用直角三角形性质边角关系,BO=AO×cos30°求出BO,然后除以船从O到B所用时间即可.【详解】解:由题意知:∠AOB=30°,在Rt△AOB中,OB=OA×cos∠AOB=80×=40(海里),航行速度为:(海里/时).本题考查锐角三角函数的运用,熟练掌握直角三角形的边角关系是关键.22、(1);(2);(3)存在,(2,2)或(2,-2)或(2,0)或(2,)【分析】(1)将A点代入抛物线的解析式即可求得答案;(2)先求得点B、点C的坐标,利用待定系数法即可求得直线BC的解析式;(3)设出P点坐标,然后表示出△ACP的三边长度,分三种情况计论,根据腰相等建立方程,求解即可.【详解】(1)将点代入中,得:,解得:,∴抛物线的解析式为;(2)当时,,∴点C的坐标为(0,4),当时,,解得:,∴点B的坐标为(6,0),设直线BC的解析式为,将点B(6,0),点C(0,4)代入,得:,∴,∴直线BC的解析式为,(3)抛物线的对称轴为,假设存在点P,设,则,,,∵△ACP为等腰三角形,①当时,,解之得:,∴点P的坐标为(2,2)或(2,-2);②当时,,解之得:或(舍去),∴点P的坐标为(2,0)或(2,8),设直线AC的解析式为,将点A(-2,0)、C(0,4)代入得,解得:,∴直线AC的解析式为,当时,,∴点(2,8)在直线AC上,∴A、C、P在同一直线上,点(2,8)应舍去;③当时,,解之得:,∴点P的坐标为(2,);综上,符合条件的点P存在,坐标为:(2,2)或(2,-2)或(2,0)或(2,).本题为二次函数的综合应用,涉及待定系数法求二次函数解析式,待定系数法求一次函数解析式,二次函数的性质,方程思想及分类讨论思想等知识点.在(3)中利用点P的坐标分别表示出AP、CP的长是解题的关键.23、(1)正比例函数、反比例函数的表达式为:,;(2)B点坐标是(-2,-1)【解析】试题分析:(1)把点A、B的坐标分别代入函数y=k1x(k1≠0)与函数中求出k1和k2的值,即可得到两个函数的解析式;(2)把(1)中所得两个函数的解析式组成方程组,解方程组即可得到点B的坐标.试题解析:解:(1)把点A(2,1)分别代入y=k1x与可得:,k2=2,∴正比例函数、反比例函数的表达式分别为:,;(2)由题意得方程组:,解得:,,∴点B的坐标是(-2,-1).24、(1

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论