




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
专题L9数轴(巩固篇)(专项练习)
一、单选题
【知识点一】数轴三要素及其画法
1.下列四个数轴的画法中,规范的是()
A.~~01~2^B.~~2~3~4^
11111、I1III
C,-2-1012U,-2-1012
2.下列说法:
①规定了原点、正方向的直线是数轴
②数轴上两个不同的点可以表示同一个有理数
④任何一个有理数都可以在数轴上找到与它对应的唯一点
其中正确的是()
A.①②③④B.②②③④C.③④D.④
3.下列结论正确的有()
个:
①规定了原点,正方向和单位长度的直线叫数轴②最小的整数是0③正数,负
数和零统称有理数④数轴上的点都表示有理数
A.0B.1C.2D.3
【知识点二】用数轴上的点表示有理数
A.点4B.点3C.点CD.点。
5.已知点A是数轴上的一点,它到原点的距离为3,把点A向左平移7个单位后,再
向右平移5个单位得到点则点8到原点的距离为()
A.1B.5C.5或1D.1或5
6.在数轴上表示-2.1和3.3两点之间的整数有()
A.4个B.5个C.6个D.7个
【知识点三】利用数轴比较有理数的大小
7.已知有理数小在数轴上的位置如图所示,则下列关系正确的是()
>
0b
8.如图,数釉上的两个点A、8所表示的数分别为。、b,那么。,b,-〃,-〃的大
小关系是()
4IIb,।.
-1012
9.已知有理数〃,力在数轴上的位置如图所示,则。,-b,-a,〃从大到小的顺序为
().
-----1------1-----------1-----
a0b
【知识点四】数轴上两点的距离
10.点A、B、C在同一条数轴上,其中点A、B表示的数分别为-3、1.若点B到点C
的距离为6,则点A到点C的距离等于()
A.3B.6C.3或9D.2或10
11.A、B为数轴上的两点,若点A表示的数是2,且线段AB=5,则点8表示的数为()
A.7B.-3C.-7或3D.7或3
90米80米-60米50米一70米40米
A.210B.130C.390D.-210
【知识点五】数轴上的动点问题
434,、44,、3
A.-B.-C.二或彳D.-sk-
545354
A.点、AB.点、BC.点CD.点。
15.点A为数轴上表示-2的点,当点A沿数釉移动4个单位长度到点B时,点B所
表示的有理数为()
A.2B.-6C.2或・6D.4
【知识点六】根据点在数轴的位置判断式子的正负
16.实数〃、〃在数粕上的对应点的位置如图所示,下列式子成立的是()
ab
-2-1012
17.已知有理数m分在数轴上的位置如图所示,则下列关系不正确的是(
-a0b>
18.如图,数轴上A,5两点分别表示数a,b,下列结论正确的是()
AB
」■」」•」
-2a-10b1
A.b-a>0B.\a\<\b\C.ab>0D.a+b>0
二、填空题
【知识点一】数轴三要素及其画法
19.规定j叫数轴.
20.在数学中,用一条直线上的点表示数,这条直线叫做,在直线上任取一点
表示0,这个点叫做;通常规定直线上向右的方向为:选取适当的长度作
为,数轴的三要素为、、.
21.如图,数轴表示正确的是_______.(填序号)
(1)-►
01234
⑵
11
011-
22一2
(3)|1111
-450-300-1500150
(4)-►
-4-2012
【知识点二】用数轴上的点表示有理数
22.如图,点A表示的数是一2,以点4为圆心、1个单位长度为半径的圆交数轴于从
C两点,那么B,C两点表示的数分别是_____.
A
___・____________••
CBCA2BA
图1图2
【知识点五】数轴上的动点问题
31.已知点4在数轴上表示的数是-18,点4从原点出发,以每秒2个单位的速度沿
着数轴向左运动,点C是八B中点,当运动时间/(秒)为时,使BC=2
33.如图,在数轴上点P、点。所表示的数分别是-17和3,点P以每秒4个单位长度
的速度,点。以每秒3个单位长度的速度,同时沿数轴向右运动.经过______秒,点P、点
Q分别与原点的距离相等.
PQ
--------1--------------------------1——।----------------->
-1703
【知识点六】根据点在数轴的位置判断式子的正负
34.观察有理数a、b、c在数轴上的位置并比较大小:c・b0,a+b0.
■1I■.
a0Ac
B..A.
,.・I_,-----1----------->
noai
36.有理数a、b、c在数轴上的位置如图,判断正负,胪》”或“V”填空b-c0,
a-b0,a+c0.
a0hc
三、解答题
37.有理数〃,方在数轴上的对应点的位置如图所示.用不等号把“,b,TJ-/2连
接起来.
0
38.已知有理数〃,b,其中数。在数轴上对应点M,b是负数,且人在数轴上对应的
点与原点的距离为3.5.
M
IIIIIIIII
-4-3-2-101234
(1)«=,b=.
39.如图,一个点从数轴上的原点开始,先向右移动3个单位长度,再向左移动5个单
位长度,可以看出,终点表示数-2,已知点A是数轴上的点,请参照图示,完成下列问题:
-5-4-3-2-1012345
(I)如果点A表示数-3,将点A向右移动7个单位长度,那么终点表示的数是;
(2)如果点A表示数3,将点4向左移动7个单位长度,再向右移动5个单位长度,那么
终点表示的数是_____;
(3)如果点A表示数小将点4向左移动/〃(m>0)个单位长度,再向右移动〃(〃:>0)
个单位长度,那么终点表示数是多少(用含。、小、〃的式子表示)?
40.已知,一个点从数轴上的原点开始,先向左移动7个单位到达A点,再从A点向
右移动12个单位到达4点,把点A到点4的距离记为A从点C是线段A5的中点.
(I)点。表示的数是;
(2)若点A以每秒2个单位的速度向左移动,同时C、B点分别以每秒1个单位、4个单
位的速度向右移动,设移动时间为,秒,
①点C表示的数是___________(用含有,的代数式表示):
②当/=2秒时,求CBAC的值;
③试探索:C8AC的值是否随着时间,的变化而改变?若变化,请说明理由;若不变,
请求其值.
参考答案
1.C
【分析】
根据数轴的三要素判析即可.
解:数轴是规定了原点、正方向、单位长度的直线,
选项A的数轴单位K度不致,因此选项A不正确;
选项B的数轴无原点,因此选项B不正确;
选项C符合数轴的意义,正确;
选项D的数轴没有正方向,因此选项D不正确;
故选:C.
【点拨】此题主要考查数轴的意义,掌握数轴的三要素是正确判断的前提.
2.L)
【分析】
根据数轴的概念:规定了原点、正方向、单位长度的直线叫做数轴.所有的有理数都可
以用数轴上的点表示,但数轴上的点不都表示有理数可得答案.
解:①规定了原点、正方向和单位长度的直线是数轴,故原说法错误;
②数轴上两个不同的点可以表示两个不同的有理数,故原说法错误;
④任何一个有理数都可以在数轴上找到与它对应的唯一点,说法正确;
故选:D.
【点拨】此题主要考直了数轴,关键是掌握数轴的概念.
3.A
解:试题解析:①规定了唯一的原点,唯一的正方向和唯一的单位长度的直线叫数轴,
故此命题不正确;
②整数包括负整数,故此命题错误:
③应为正有理数、负有理数和零统称有理数,故此命题不正确;
④数轴上的点不但表示有理数,也能表示无理数,故此命题错误.
综上所述,全都不正确.
故选A.
【点拨】数轴:规定了唯一的原点,唯一的正方向和唯一的单位长度的直线叫数轴.有
理数是整数和分数的统称.正数、负数和零统称有理数.数轴上的点不是表示有理数,就是
表示无理数.
4.A
【分析】
先求出各数的绝对值,再比较出其大小即可.需注意,若同时比较分数和小数,使其统
一成同一格式更容易比较大小.
解:因为|3.2卜3.2,
|2|=2,
IH=1>
12;|=2;=2.5,
且3.2>2.5>2>1,
所以距离原点最远的点是A点,
故选:A.
【点拨】本题考查的是数轴等知识,熟知数轴上点到原点距离的定义是解答此题的关键.
5.D
【分析】
先判断出点A的坐标,再利用平移的性质即可解决问题.
解:由题意A点表示的数为±3,
若A点表示的数为3,则点A向左平移7个单位,再向右平移5个单位得到点B为:
37+5=1,
若八点表示的数为3,则点A向左平移7个单位,再向右平移5个单位得到点B为:
37+5=5,
则点8到原点的距离为1或5.
故诜:D.
【点拨】本题考查数轴,解题的关键是理解题意,灵活运用所学知识解决问题,属于中
考常考题型.
6.C
【分析】
在数轴上找出点2.1和3.3,找出两点之间的整数即可得出结论.
解:依照题意,画出图形,如图所示.
-•1------1------1------------1------b・>
-3-2-101234
在-2.1和3.3两点之间的整数有:-2,-1,0,1,2,3,共6个,
故选:C.
【点拨】本题考查了数轴,解题的关键是画出数轴,利用数形结合的方法解答.
7.B
【分析】
通过识图可得〃VOV/3⑷>|臼,从而作出判断.
解:由题意可得:a<0<bf\ci\>\b\,
故选:B.
【点拨】本题考查了数轴上的点,理解数轴上点的特点,准确识图是解题关键.
8.A
【分析】
根据相反数的意义,把。先表示在数轴上,然后再比较它们的大小关系.
解:根据相反数的意义,把。、表示在数轴上
-b,-a
°i11bli1A
-1012
所以a<b<b<G.
故选:A.
【点拨】本题考查了数轴和有理数的大小比较,把〃、〃表示在数轴上,利用数形结合
是解决本题比较简单的方法.
9.C
【分析】
利用数轴到原点的距离,即可求解.
故选C
【点拨】本题考查绝对值的意义,以及相反数意义,属于基础题.
10.D
解:•・•点A、B表示的数分别为-3、1,若点B到点C的距离为6,
・••当。在8的左侧时,点C表示的数是1・6=-5,
当。在8的右侧时,点。表示的数是1+6=7,
点A与点。的距离是-3-(-5)=2或7-(-3)=10.
故选:D.
【点拨】此题主要考杳了数轴,分情况讨论得到点C表示的数是解题关键.
11.D
【分析】
根据题意,结合数轴确定出点6所表示的数即可.
解:•・•点A表示的数是数且48=5,
当点8在A的左侧,点8表示的数为:25=3,
当点3在点A的右侧,点8表示的数为:2+5=7,
・••点8表示的数为7或3,
故选:D.
【点拨】此题考杳了用数轴I:的点表示数,熟练掌握数轴上点表示的怠义是解本题的关
键.
12.A
【分析】
数轴法:设点C为原点,则A表示数90,。表示数80,以此类推,将以上各观测点在
数轴上表示,即可解题.
解:设点C为原点,则A表示数90,。表示数80,以此类推将以上各观测点在数轴上
表示如下:
即E表示数140,尸表示数90,G表示数160,B表示数120
故选:A.
【点拨】本题考查正负数在实际生活中的应用,是基础考点,利用数轴解题是关键.
13.C
【分析】
根据题意,M表示的数为412,N表示的数为633则MN=|63/4/+2|,8M=64/+2,列式
计算即可.
解:根据题意,M表示的数为42N表示的数为63/,则MN=|63/4/+2|,8M=64什2,
・・・87片42,或力8=421,
44
解得或工,
JJ
故选C.
【点拨】本题考查了数轴上两动点间的距离,用定数,运动距离表示动点表示的数是解
题的关键.
14.D
【分析】
所以四次一循环,
故选:D
【点拨】本题考查的是数轴点的运动规律的探究,掌握从具体到一般的探究方法,确定
出点的运动规律是解题的关键.
15.C
【分析】
数轴上点的坐标变化和平移规律解答即可.
解:•・•点A为数轴上的表示-2的动点,
①当点A沿数轴向左移动4个单位长度时,点B所表示的有理数为-2-4=-6;
②当点A沿数轴向右移动4个单位长度时,点B所表示的有理数为-2+4=2.
・•・点B所表示的有理数为2或-6.
故选:C.
【点拨】本题主要考查了数轴上点的坐标变化和平移规律,灵活运用在数轴上平移点的
规律“左减右加”以及分类讨论思想是解答本题的关键.
16.C
【分析】
故选:C.
【点拨】本题考查根据数轴上的点的位置判断式子的大小,解题的关键是根据数轴上左
i力的点表示的数点、比右i力的点表示的数要小,及有理数的运算规律来判断式子的大小.
17.D
【分析】
通过识图可得“V0V/2,⑷>|臼,从而作出判断.
解:由题意可得:a<O<b,\a\>\b\,
A、b>O>a,正确,此选项不符合题意;
故选:D.
【点拨】本题考查数轴上的点,理解数轴上点的特点,准确识图是解题关键.
18.A
【分析】
故选项A正确
故选:A
【点拨】本题考查了数轴上两个数的大小比较,有理数的加减乘的运算法则等知识,掌
握这些知识是关键,注意数形结合.
19.原点、正方向、单位长度的直线
【分析】
由数轴的定义可得:规定了原点、正方向、单位长度的直线叫数轴.
解:数轴的定义为:规定了原点、正方向、单位长度的直线叫数轴.
故答案为原点、正方向、单位长度的直线.
【点拨】本题考查数轴,熟练掌握数轴的基本定义即是解题关键.
20.数轴原点正方向单位长度原点正方向单位长度
解:数轴是规定了原点、正方向和单位长度的直线.在画数轴时,一般先画成•条水平
的直线,再在直线上选取一点为原点,然后用箭头表示向右为正,最后根据需要选取适当的
长度作为单位长度,从原点向右,每隔一个单位长度取一点,依次表示为1,2,…;从原
点向左,每隔一个单位长度取一点,依次表示为1,2,3,....
故答案为数轴,原点,正方向,单位长度,原点,正方向,单位长度.
21.(1)(2)(3)
解:对于数轴上的原点位置、单位长度应灵活处理.第(1)个图中,虽然原点偏左,
但这条直线符合数轴的定义;第(2)个图中,用T个格”表示;个单位长度;第(3)个图
中,用“1个格”表示150人单位长度;第(4)个图中,单位长度不统一.在数轴上,冒个
格”可以表布1个单位长度,也可以表不5个单位长度,190个单位长度,0.2个单位长度……
但需要注意的是,在同一数轴上,单位长度必须一致.
【分析】
解:•・•点A表示的数是一2,以点A为圆心、1个单位长度为半径的圆交数轴于8.C
两点,
【点拨】本题考查了数轴上两点距离,用数轴上的点表示有理数,数形结合是解题的关
键.
23.1-
5
解:7单位长度表示1,
・二五等分后每份为
4
故答案为:1g.
【点拨】本题考查了分数的意义以及分数的运算,理解分数的意义是解题的关键.
24.-4
【分析】
根据数轴的单位长度,判断墨迹盖住部分的整数,然后求出其和.
解:由图可知,左边盖住的整数是-2,-3,-4,-5;
右边盖住的整数是1,2,3,4;
故答案为:-4.
【点拨】本题主要考杳了数轴,解题的关键是先看清盖住了哪几个整数.
【分析】
【点拨】本题考查了有理数大小比较:正数大于0,负数小于0;负数的绝对值越大,
这个数越小.也考杳了数轴.
26.a>b>b>a
【分析】
首先根据图形,可得b<0<a,且|a|>|b|,再根据一对相反数在数轴上分别在原点的左
右两边,并且到原点的距离相等的特点,可得出a,b在数轴上的位置,然后根据数轴上,
右边的数总大于左边的数,可得出结果.
解:根据图形可知:b<0<a,|a|>|b|,则a、b在数轴上表示如图所示,
.*.a>b>b>a,
故答案为:a>b>b>a.
--------------•••-------•-------------A
-ab0-ba
【点拨】本题考查了相反数,数轴,有理数大小比较等,由于引进了数轴,我们把数和
点对应起来,也就是把“数''和"形”结合起来,二者互相补充,相辅相成,把很多复杂的问题
转化为简单的问题,在学习中要注意培养数形结合的数学思想.
27.5
【分析】
根据题意画出数轴,在数轴上标出-3.1和2两个点,便可直接求出符合条件的整数.
解:画出数轴并标出各点,如图:
-3.1
I_d------1——I------1_I_6_
-4-3-2-10123
由图可知,符合条件的整数有-3,-2,-1,0,1共5个.
故答案为:5.
【点拨】本题考查了有理数的大小比较,能求出符合的所有整数是解此题的关键.
28.-2或空
44
【分析】
分两种情况:当点B在点A的左边时;当点B在点A的右边时;然后根据线段的长
为日,求出点8在数轴上对应的数为多少;最后根据C为0B的中点,求出点。在数轴上
对应的数为多少即可.
解:当点3在点A的左边时,
BCOA
''6'2
•・•线段A3的长为点A在数轴上对应的数为2,
117
・••点8在数轴上对应的数为:2y=-p
•・・C为08的中点,
・••点。在数轴上对应的数为:
7-7
——4-2=一一.
24
当点B在点A的右边时,
OACB
6"2~k
•・•线段人B的长为装,点4在数轴上对应的数为2,
・••点8在数轴上对应的数为:?+2=?,
22
VC为08的中点,
・••点。在数轴上对应的数为:
15、15
-4-2=—.
24
综上,可得点C在数轴上对应的数为7或:15.
44
715
故答案为:-丁或了.
44
【点拨】此题主要考查了两点间的距离的求法,要熟练掌握,解答此题的关键是耍明确:
连接两点间的线段的长度叫两点间的距离.
29.-##1.5
2
【分析】
根据点A表示的数可求得点A与2之间的距离,继而可求得点B表示的数.
2
解:•・•点A表示的数为1彳,
・•・点人与2之间的距而为:
・・・,4=工,
312
・•・每一份的单位长度为《,
1--—x2=-,
3122
3
・••点8表示的数为:p
3
故答案为:—.
【点拨】本题考查数轴,为8是数轴上任意不同的两点,则这两点间的距离=右边的数左
边的数,熟知该知识点是解题的关键.
30.6
【分析】
•・•4,8两点之间的距离为1,
■A表示8,8表示+5,
.•・A8=5(8)=5+8=13,
/.A-6
故答案为:6.
【点拨】本题考查了数轴表示数的意义,掌握数轴上两点之间的距离公式是解决问题的
关键.
31.7秒或11秒
【分析】
根据数轴上的点对应为数表示的意义,由点A在数釉上表示的数是18,得A到原点的
距离为18.若BC为2,则需要分C在B的右侧或C在B的左侧这两种情况讨论:
解:当运动,秒时,8运动的路程为2九
・•・3到原点的距离为的
•・•点A在数轴上表示的数是-18,
・・・A到原点的距离为18.
①如图1,当B在A的右侧,即gtV9时,AB=18-2t.
O-----S-----g--------1_i-------------------I------------->
-20-19-18-17-16-15-14-13-12-11-10-9-8-7-6-5-4-3-2-10
图1
VC是AB的中点,
若BC=2,则9-t=2.
At=7(0<7<9,符合题意).
②如图2,当B在A的左侧时,即t>9,时,AB=2t-18.
BCA
I----o----o----o----1-----i-----1--------------------1-----1-----
-24-22-20-18-16-14-12-10-8-6-4-20
图2
•・•点C是的中点,
若BC=2,则t-9=2.
At=ll(11>9,符合题意).
综卜.所述,当t=7(秒)或t=ll(秒)时,BC=2.
故答案为:7秒或11秒.
【点拨】本题主要考查数轴上的点对应的数表示的意义,熟练掌握数轴上的点对应的数
的意义以及分类讨论的思想是解决本题的关键.
32.2
【分析】
贝ijPM=20+Z,MN=2什4,
故答案为:2.
33.20或2
【分析】
分两种情况进行解答,即点P在原点的左侧,点P在原点的右侧,根据到原点的距离
相等,列方程求解即可.
解:设运动的时间为/秒时,点尸、点。分别与原点的距离相等,
①当点P在原点的左侧时,
有1747=3+3/,
解得,t=21
②当点夕也在原点的右侧时,即点。追及到点Q,
有4r=20+3r,
解得,/=2。,
故答案为:20或2.
【点拨】本题考查数轴表示数的意义和方法,理解数轴上两点之间的距离的计算方法是
解决问题的关键.
34.><
【分析】
根据数轴表示数得到aVOVbVc,|b|<a|<|c|,根据有理数的加减运算得出答案即可.
解:由题意可知:a<O<b<c,|b|<a|<|c|,
所以c-b>0,a+b<0.
故答案为:>,<.
【点拨】本题考查了数轴,掌握数轴上数的排列特点和有理数的加减运算的方法是解决
问题的关键.
35.<
【分析】
由数轴上的数右边的数总是大于左边的数可以知道:b<-l<O<a<l,且|a|V|b|.根据
有理数的运算法则即可判断.
解:V|a|<|b|,且a>0,b<0,
则a+bVO.
故答案为:v
【点拨】本题主要考查了利用数轴比较数的大小的方法,以及有理数的运算法则.
36.<<>
【分析】
根据数轴确定出a、b、c的正负情况以及绝对值的大小,然后解答即可.
解:由图可知,a<0.b>0,c>0,且|b|V|a|V|c|,
Abc<0,ab<0,a+c>0.
故答案为V,V,>.
【点拨】本题考查了数轴,绝对值的性质,准确识图,确定出a、b、c的正负情况和绝
对值的大小是解题的关键.
略
38.(1)2,-3.5;
【分析】
(1)根据M点的位置可直接写出。表示的数,再由。到原点的距离为3.5且〃为负数
可得出〃的值;
(2)在数轴上表示出各点,从左到右用“V”连接起来即可.
(I)
解:•・•数。在数轴上对应点用
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 建筑装饰工程外立面施工方案
- 钢结构抗震设计与加固技术方案
- 生态环境恢复与重建方案
- 城市景观照明方案设计
- 运动鞋生产线项目建筑工程方案
- 绿化植被选种与栽植技术方案
- 在高三第一次月考成绩分析会上的讲话:把课堂还给学生让课堂充满学习活力
- 中学生计算机网络协议竞赛试题及参考答案
- 房地产行业面试技巧试题及答案
- 医师中医外科学试题及答案
- 减脂课件教学课件
- 2025 SMETA员工公平职业发展管理程序-SEDEX验厂专用文件(可编辑)
- 卫生法律法规试题题库(附答案)
- A1技术环境下教学数据分析方案
- OJT基础知识培训课件
- 2025年反洗钱知识竞赛试题库(附答案)
- 2025年秋招:农行笔试题库及答案(可下载)
- 水浒传鲁智深介绍
- 24点游戏的教学课件
- 重庆网吧登记管理办法
- 2025年大学英语四级考试题及答案
评论
0/150
提交评论