




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
四川省成都市部分学校2026届数学八年级第一学期期末检测模拟试题拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.若多项式能用完全平方公式进行因式分解,则值为()A.2 B. C. D.2.现有两根木棒,长度分别为5cm和17cm,若不改变木棒的长度,要钉成一个三角形木架,则应在下列四根木棒中选取()A.24cm的木棒 B.15cm的木棒 C.12cm的木棒 D.8cm的木棒3.若a+b=5,则代数式(﹣a)÷()的值为()A.5 B.﹣5 C.﹣ D.4.下列各数中,属于无理数的是()A. B.1.414 C. D.5.下列运算中,正确的是()A. B.C. D.6.如图,将边长为的正方形沿轴正方向连续翻转次,点依次落在点、、、…的位置上,则点的坐标为()A. B. C. D.7.如图,点E,F在AC上,AD=BC,DF=BE,要使△ADF≌△CBE,还需要添加的一个条件是()A.∠A=∠C B.∠D=∠B C.AD∥BC D.DF∥BE8.如图,在四边形ABCD中,∠A=∠C=90°,∠B=α,在AB、BC上分别找一点E、F,使△DEF的周长最小.此时,∠EDF=()A.α B. C. D.180°-2α9.下列图标中,既是轴对称图形,又是中心对称图形的是()A. B.C. D.10.今年校团委举办了“中国梦,我的梦”歌咏比赛,张老师为鼓励同学们,带了50元钱取购买甲、乙两种笔记本作为奖品.已知甲种笔记本每本7元,乙种笔记本每本5元,每种笔记本至少买3本,则张老师购买笔记本的方案共有A.3种 B.4种 C.5种 D.6种11.如果把分式中的和都扩大了3倍,那么分式的值()A.扩大3倍 B.不变 C.缩小3倍 D.缩小6倍12.如图,在△ABC中,以点B为圆心,以BA长为半径画弧交边BC于点D,连接AD.若∠B=40°,∠C=36°,则∠DAC的度数是()A.70° B.44° C.34° D.24°二、填空题(每题4分,共24分)13.七巧板被誉为“东方魔板”.小明利用七巧板(如图1)中各板块的边长之间的关系拼成一个凸六边形,则该凸六边形(如图2)的周长是_____.14.如图,已知在△ABC中,∠B与∠C的平分线交于点P.当∠A=70°时,则∠BPC的度数为________.15.如果一个数的算术平方根等于它本身,那么这个数是___________.16.在一个不透明的盒子中装有n个球,它们除了颜色之外其它都没有区别,其中含有3个红球,每次摸球前,将盒中所有的球摇匀,然后随机摸出一个球,记下颜色后再放回盒中.通过大量重复试验,发现摸到红球的频率稳定在0.03,那么可以推算出n的值大约是_____.17.已知,正比例函数经过点(-1,2),该函数解析式为________________.18.如图,已知∠1=∠2,请你添加一个条件______,使得△ABD≌△ACD.(添一个即可)三、解答题(共78分)19.(8分)如图,在平面直角坐标系中,一次函数与轴、轴分别交于点、两点,与正比例函数交于点.(1)求一次函数和正比例函数的表达式;(2)若点为直线上的一个动点(点不与点重合),点在一次函数的图象上,轴,当时,求点的坐标.20.(8分)化简①②(+)()+221.(8分)在边长为1的小正方形网格中,的顶点均在格点上,(1)点关于轴的对称点坐标为;(2)将向左平移3个单位长度得到,请画出,求出的坐标;(3)求出的面积.22.(10分)如图,在平面直角坐标系中,,,(1)画出关于轴的对称图形,并写出点、的坐标(2)直接写出的面积(3)在轴负半轴上求一点,使得的面积等于的面积23.(10分)如图所示,,AD为△ABC中BC边的中线,延长BC至E点,使,连接AE.求证:AC平分∠DAE24.(10分)已知等边△AOB的边长为4,以O为坐标原点,OB所在直线为x轴建立如图所示的平面直角坐标系.(1)求点A的坐标;(2)若直线y=kx(k>0)与线段AB有交点,求k的取值范围;(3)若点C在x轴正半轴上,以线段AC为边在第一象限内作等边△ACD,求直线BD的解析式.25.(12分)甲、乙两车从A城出发沿一条笔直公路匀速行驶至B城在整个行驶过程中,甲、乙两车离开A城的距离千米与甲车行驶的时间小时之间的函数关系如图所示.,B两城相距______千米,乙车比甲车早到______小时;甲车出发多长时间与乙车相遇?若两车相距不超过20千米时可以通过无线电相互通话,则两车都在行驶过程中可以通过无线电通话的时间有多长?26.如图,在中,是边上的一点,,平分,交边于点,连接.(1)求证:;(2)若,,求的度数.
参考答案一、选择题(每题4分,共48分)1、C【分析】利用完全平方公式的结构特征判断即可确定出a的值.【详解】∵多项式x1+1ax+4能用完全平方公式进行因式分解,
∴1a=±4,
解得:a=±1.
故选:C.【点睛】此题考查因式分解-运用公式法,熟练掌握完全平方公式是解题的关键.2、B【分析】根据三角形的三边关系,确定第三边的取值范围,即可完成解答.【详解】解:由三角形的三边关系得:17-5<第三边<17+5,即第三边在12到22之间故答案为B.【点睛】本题考查了三角形的三边关系的应用,找到三角形三边关系与实际问题的联系是解答本题的关键.3、B【分析】原式括号中两项通分并利用同分母分式的减法法则计算,约分得到最简结果,把已知等式代入计算即可求出值.【详解】∵a+b=5,∴原式故选:B.【点睛】考查分式的化简求值,掌握减法法则以及除法法师是解题的关键,注意整体代入法在解题中的应用.4、C【分析】无理数就是无限循环小数,依据定义即可作出判断.【详解】A.是有理数,错误B.1.414是有限小数,是有理数,错误C.是无限不循环小数,是无理数,正确D.=2是整数,错误故选C.【点睛】此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,6,0.8080080008…(每两个8之间依次多1个0)等形式.5、A【分析】根据同底数幂的乘法,可判断A;根据合并同类项,可判断B;根据幂的乘方,可判断C,根据积的乘方,可判断D.【详解】A、,该选项正确;
B、,不是同类项不能合并,该选项错误;
C、,该选项错误;
D、,该选项错误;
故选:A.【点睛】本题考查了同底数幂的乘法,合并同类项,幂的乘方,积的乘方,解答本题的关键是熟练掌握各部分的运算法则.6、A【分析】根据题意分别求出、、、…横坐标,再总结出规律即可得出.【详解】解:根据规律(0,1)、(2,1)、(3,0)、(3,0),(4,1)、(6,1)、(7,0)、(7,0)…每4个一个循环,可以判断在505次循环后与一致,即与相等,坐标应该是(2019,0)故选A【点睛】此题主要考查了通过图形观察规律的能力,并根据规律进行简单计算的能力.7、B【分析】利用全等三角形的判定与性质进而得出当∠D=∠B时,△ADF≌△CBE.【详解】当∠D=∠B时,在△ADF和△CBE中∵,∴△ADF≌△CBE(SAS)考点:全等三角形的判定与性质.8、D【分析】作点D关于BA的对称点P,点D关于BC的对称点Q,连接PQ,交AB于E,交BC于F,则点E,F即为所求.根据四边形内角和等于360°,可得∠ADC的度数,进而可得∠P+∠Q的度数,由对称性可得∠EDP+∠FDQ的度数,进而即可求解.【详解】作点D关于BA的对称点P,点D关于BC的对称点Q,连接PQ,交AB于E,交BC于F,则点E,F即为所求.∵四边形ABCD中,∠A=∠C=90°,∠B=α,∴∠ADC=180°-α,∴∠P+∠Q=180°-∠ADC=α,由对称性可知:EP=ED,FQ=FD,∴∠P=∠EDP,∠Q=∠FDQ,∴∠EDP+∠FDQ=∠P+∠Q=α,∴故选D.【点睛】本题主要考查轴对称的性质和应用,四边形的内角和定理以及三角形的内角和定理,掌握掌握轴对称图形的性质是解题的关键.9、D【分析】根据轴对称图形和中心对称图形的概念对各选项分析判断即可得解.【详解】解:A、既不是轴对称图形,也不是中心对称图形,故本选项错误;B、不是轴对称图形,是中心对称图形,故本选项错误;C、是轴对称图形,不是中心对称图形,故本选项错误;D、既是轴对称图形,又是中心对称图形,故本选项正确.故选:D.【点睛】本题考查了轴对称图形与中心对称的概念,熟悉基本概念及判断方法是解题的关键.10、D【分析】设甲种笔记本购买了x本,乙种笔记本y本,由题意,得7x+5y≤1.【详解】解:∵x≥3,y≥3,∴当x=3,y=3时,7×3+5×3=36<5;当x=3,y=4时,7×3+5×4=41<1;当x=3,y=5时,7×3+5×5=46<1;当x=3,y=6时,7×3+5×6=51>1舍去;当x=4,y=3时,7×4+5×3=43<1;当x=4,y=4时,7×4+5×4=4<1;当x=4,y=5时,7×4+5×5=53>1舍去;当x=5,y=3时,7×5+5×3=1=1.综上所述,共有6种购买方案.故选D.11、C【分析】将分子与分母中未知数分别乘以3,进而化简即可.【详解】,故分式的值缩小3倍.故选:C.【点睛】本题考查了分式的性质,将未知数扩大3倍后再化简分式是解题关键.12、C【分析】易得△ABD为等腰三角形,根据顶角可算出底角,再用三角形外角性质可求出∠DAC【详解】∵AB=BD,∠B=40°,∴∠ADB=70°,∵∠C=36°,∴∠DAC=∠ADB﹣∠C=34°.故选C.【点睛】本题考查三角形的角度计算,熟练掌握三角形外角性质是解题的关键.二、填空题(每题4分,共24分)13、4+8【分析】由正方形的性质和勾股定理求出各板块的边长,即可求出凸六边形的周长.【详解】解:如图所示:图形1:边长分别是:4,2,2;图形2:边长分别是:4,2,2;图形3:边长分别是:2,,;图形4:边长是:;图形5:边长分别是:2,,;图形6:边长分别是:,2;图形7:边长分别是:2,2,2;∴凸六边形的周长=2+2×2+2+×4=4+8;故答案为:4+8.【点睛】本题考查了正方形的性质、勾股定理、等腰直角三角形的性质;熟练掌握正方形的性质,利用勾股定理进行计算是解题关键14、125°【详解】∵△ABC中,∠A=70°,∴∠ABC+∠ACB=180°−∠A=180°−70°=110°∴BP,CP分别为∠ABC与∠ACP的平分线,∴∠2+∠4=(∠ABC+∠ACB)=×110°=55°∴∠P=180°−(∠2+∠4)=180°−55°=125°故答案为125°.15、0或1.【解析】根据算术平方根的定义:一个非负数的正的平方根,即为这个数的算术平方根.所以结果必须为正数,由此即可解决问题.【详解】∵1的算术平方根为1,0的算术平方根0,所以算术平方根等于他本身的数是0或1.故答案为:0或1.【点睛】此题主要考查了算术平方根的定义和性质,算术平方根的概念易与平方根的概念混淆而导致错误.弄清概念是解决本题的关键.16、1.【解析】在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,可以从比例关系入手,列出方程求解.【详解】由题意可得,=0.03,解得,n=1,故估计n大约是1,故答案为1.【点睛】本题考查了利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:概率=所求情况数与总情况数之比.17、y=-2x【解析】把点(-1,2)代入正比例函数的解析式y=kx,即可求出未知数的值从而求得其解析式.【详解】设正比例函数的解析式为y=kx(k≠0),∵图象经过点(-1,2),∴2=-k,此函数的解析式是:y=-2x;故答案为:y=-2x【点睛】此题考查待定系数法确定函数关系式,此类题目需灵活运用待定系数法建立函数解析式,然后将点的坐标代入解析式,利用方程解决问题.18、AB=AC(不唯一)【解析】要判定△ABD≌△ACD,已知AD=AD,∠1=∠2,具备了一组边对应相等,一组对应角相等,故添加AB=AC后可根据SAS判定△ABD≌△ACD.解:添加AB=AC,∵在△ABD和△ACD中,AB=AC,∠1=∠2,AD=AD,∴△ABD≌△ACD(SAS),故答案为AB=AC.三、解答题(共78分)19、(1)一次函数解析式为,正比例函数的解析式为:;(2)点P的坐标为:或【分析】(1)点D(2,2)代入和中,求出解析式即可;(2)通过一次函数解析式求出点A的坐标,设P点坐标为(m,m),则Q点坐标为(m,-2m+6),再根据,解出m的值,即可求出点P的坐标.【详解】(1)把点D(2,2)代入中得:,解得:,∴一次函数解析式为,把点D(2,2)代入中得:,解得:,∴正比例函数的解析式为:;(2)把y=0代入得:,∴A点坐标为(3,0),OA=3,设P点坐标为(m,m),则Q点坐标为(m,-2m+6),,∵,∴,解得:或,∴点P的坐标为:或.【点睛】本题是对一次函数的综合考查,熟练掌握待定系数法求一次函数解析式及一次函数知识是解决本题的关键.20、(1);(2).【分析】(1)先利用二次根式的乘法法则运算,然后合并即可;(2)利用平方差公式计算.【详解】解:(1)原式===;(2)原式=2-3+4=.【点睛】本题考查二次根式的混合运算,掌握运算法则正确计算是解题关键.21、(1)点关于轴的对称点坐标为;(2)图详见解析,的坐标为;(3)【分析】(1)关于轴对称的两点横坐标互为相反数,纵坐标相等即得;(2)先找出关键点,再将关键点向左平移3个单位长度并顺次连接即得,最后根据图即得的坐标;(3)将填充成梯形并求出面积,再将梯形面积减去增加部分即得.【详解】解:(1)∵点坐标为(3,2)∴点关于轴的对称点坐标为(,);(2)如图所示,的坐标为(,)(3)如下图作梯形∵∴【点睛】本题考查直角坐标系中图形平移、轴对称的坐标特征及填补法求三角形的面积,解题关键是熟练掌握关于轴对称的两点横坐标互为相反数且纵坐标相等,画平移后的图形先找关键点,填充法求三角形面积.22、(1)画图见解析,、;(2)5;(3)【分析】(1)根据关于x轴对称的点的坐标特点,横坐标不变,纵坐标互为相反数,画图求解;(2)利用割补法求三角形面积;(3)设,采用割补法求△ABP面积,从而求解.【详解】解:(1)如图:、(2)∴的面积为5(3)设,建立如图△PMB,连接AM有图可得:∴解得:∴【点睛】本题考查画轴对称图形,三角形的面积计算,利用数形结合思想采用割补法解题是关键.23、详见解析【分析】延长AD到F,使得DF=AD,连接CF.证明△ACF≌△ACE即可解决问题.【详解】解:延长AD到F,使得DF=AD,连接CF.∵AD=DF,∠ADB=∠FDC,BD=DC,∴△ADB≌△FDC(SAS),∴AB=CF,∠B=∠DCF,∵BA=BC,CE=CB,∴∠BAC=∠BCA,CE=CF,∵∠ACE=∠B+∠BAC,∠ACF=∠DCF+∠ACB,∴∠ACF=∠ACE,∵AC=AC,∴△ACF≌△ACE(SAS),∴∠CAD=∠CAE.∴AC平分∠DAE【点睛】本题考查了全等三角形的判定和性质,等腰三角形的性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.24、(1)点A的坐标为(2,2);(2)0<k≤;(3)y=x﹣4【分析】(1)如下图所示,过点A作AD⊥x轴于点D,则AD=OAsin∠AOB=4sin60°=2,同理OA=2,即可求解;(2)若直线y=kx(k>0)与线段AB有交点,当直线过点A时,将点A坐标代入直线的表达式得:2k=2,解得:k=,即可求解;(3)证明△ACO≌△ADB(SAS),而∠DBC=180°﹣∠ABO﹣∠ABD=180°﹣60°﹣60°=60°,即可求解.【详解】解:(1)如下图所示,过点A作AD⊥x轴于点D,则AD=OAsin∠AOB=4sin60°=,同理OA=2,故点A的坐标为(2,2);(2)若直线y=kx(k>0)与线段AB有交点,当直线过点A时,将点A坐标代入直线的表达式得:2k=2,解得:k=,直线OB的表达式为:y=0,而k>0,故:k的取值范围为:0<k≤;(3)如下图所示,连接BD,∵△OAB是等边三角形,∴AO=AB,∵△ADC为等边三角形,∴AD=AC,∠OAC=∠OAB+∠CAB=60°+∠CAB=∠DAC+∠CAB=∠DAB,∴△ACO≌△ADB(SAS),∴∠AOB=∠ABD=60°,∴∠DBC=180°﹣∠ABO﹣∠ABD=180°﹣60°﹣60°=60°,故直线BD表达式的k值为tan60°=,设直线BD的表达式为:y=x+b,将点B(4,0)代入上式得解得:b=﹣4,故:直线BD的表达式为:y=x﹣4.【点睛】本题
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 液压车间安全培训试题及答案解析
- 证券从业资格考试居住地及答案解析
- 科目一护理知识题库及答案解析
- 液压缸产品知识培训课件
- 安徽省a类安全证题库及答案解析
- 糖尿病多远护理题库及答案解析
- 2025年国家开放大学《动画制作基础》期末考试备考试题及答案解析
- 2025年四川省法院书记员招聘笔试题库附答案
- 2025年宜宾市专业技术人员继续教育公需科目考试试题及答案
- 2025年新高压电安全员考试题及答案
- 工厂临时用工方案(3篇)
- 监理整改措施方案(3篇)
- 景区酒店融资方案(3篇)
- GB/T 9948-2025石化和化工装置用无缝钢管
- 下肢静脉血栓疑难病例护理讨论
- 黑色素瘤病理诊断
- 农行柔性团队管理办法
- 预防性维护与预测分析
- 重心的讲课课件
- DB42∕T 2221-2024 预制芯桩复合桩技术规程
- 抗癫痫类药讲课件
评论
0/150
提交评论