




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山西省临汾市名校2026届八年级数学第一学期期末质量跟踪监视试题视试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.下列各数:3.141,−227,8,π,4.21·7A.1个 B.2 C.3个 D.4个2.若关于的方程的解为正数,则的取值范围是()A. B. C.且 D.且3.2014年6月3日中央新闻报道,为鼓励居民节约用水,北京市将出台新的居民用水收费标准:若每月每户居民用水不超过4m3,则按每立方米2元计算;若每月每户居民用水超过4m3,则超过部分按每立方米4.5元计算(不超过部分仍按每立方米2元计算).现假设该市某户居民用水xm3,水费为y元,则y与x的函数关系式用图象表示正确的是()A. B. C. D.4.下列各组数,可以作为直角三角形的三边长的是()A.2,3,4 B.7,24,25 C.8,12,20 D.5,13,155.如图,在平面直角坐标系中有一个3×3的正方形网格,其右下角格点(小正方形的顶点)A的坐标为(﹣1,1),左上角格点B的坐标为(﹣4,4),若分布在过定点(﹣1,0)的直线y=﹣k(x+1)两侧的格点数相同,则k的取值可以是()A. B. C.2 D.6.小明不慎将一个三角形玻璃摔碎成如图所示的四块,现要到玻璃店配一个与原来一样大小的三角形玻璃,你认为应带去的一块是()A.第1块 B.第2块 C.第3块 D.第4块7.若一次函数与的图象交轴于同一点,则的值为()A. B. C. D.8.如图,AC、BD相交于点O,OA=OB,OC=OD,则图中全等三角形的对数是().A.1对 B.2对 C.3对 D.4对9.下列多项式能用平方差公式分解因式的是()A.﹣x2+y2 B.﹣x2﹣y2 C.x2﹣2xy+y2 D.x2+y210.目前世界上能制造的芯片最小工艺水平是5纳米,而我国能制造芯片的最小工艺水平是16纳米,已知1纳米=10﹣9米,用科学记数法将16纳米表示为()A.1.6×10﹣9米 B.1.6×10﹣7米 C.1.6×10﹣8米 D.16×10﹣7米二、填空题(每小题3分,共24分)11.我国宋朝数学家杨辉在他的著作《详解九章算法》中提出如图,此表揭示了(a+b)n(n为非负整数)展开式的各项系数的规律,例如:(a+b)0=1,它只有一项,系数为1;(a+b)1=a+b,它有两项,系数分别为1,1;(a+b)2=a2+2ab+b2,它有三项,系数分别为1,2,1;(a+b)3=a3+3a2b+3ab2+b3,它有四项,系数分别为1,3,3,1;…;根据以上规律,(a+b)5展开式共有六项,系数分别为______,拓展应用:(a﹣b)4=_______.12.画出一个正五边形的所有对角线,共有_____条.13.已知三角形三边长分别为、、(a>0,b>0),请借助构造图形并利用勾股定理进行探究,得出此三角形面积为____(用含a、b的代数式表示).14.比较大小:4____3(填“>”“<”或“=”).15.比较大小_____2;-5_____.16.比较大小:.17.小明从家跑步到学校,接着马上原路步行回家.如图所示为小明离家的路程与时间的图像,则小明回家的速度是每分钟步行________m.18.若数据的方差是,则数据的方差是__________.三、解答题(共66分)19.(10分)如图,等腰中,,,点、分别在边、的延长线上,,过点作于点,交于点.(1)若,求的度数;(2)若.求证:.20.(6分)如图,在平行四边形ABCD中,点E为AD的中点,延长CE交BA的延长线于点F.(1)求证:AB=AF;(2)若BC=2AB,∠BCD=100°,求∠ABE的度数.21.(6分)把下列各式因式分解:(1)(2)22.(8分)如图,在中,,,平分,,求证:23.(8分)如图1,在中,,平分,且点在的垂直平分线上.(1)求的各内角的度数.(2)如图2,若是边上的一点,过点作直线的延长线于点,分别交边于点,的延长线于点,试判断的形状,并证明你的结论.24.(8分)如图,在平面直角坐标系中,,,.(1)请画出关于轴对称的;(2)直接写出的面积为;(3)请仅用无刻度的直尺画出的平分线,保留作图痕迹.25.(10分)如图1,在△ABC和△ADE中,∠BAC=∠EAD,AB=AC,AD=AE,连接CD、AE交于点F.(1)求证:BE=CD.(2)当∠BAC=∠EAD=30°,AD⊥AB时(如图2),延长DC、AB交于点G,请直接写出图中除△ABC、△ADE以外的等腰三角形.26.(10分)如图:已知∠AOB和C、D两点,求作一点P,使PC=PD,且P到∠AOB两边的距离相等.
参考答案一、选择题(每小题3分,共30分)1、C【解析】无理数就是无限不循环小数,依据定义即可判断.【详解】8=22,根据无理数的定义可知无理数有:8,π,0.1010010001……,故答案为【点睛】本题考查无理数的定义,解题的关键是掌握无理数的定义.2、D【详解】去分母得,m﹣1=2x﹣2,解得,x=,∵方程的解是正数,∴>0,解这个不等式得,m>﹣1,∵m=1时不符合题意,∴m≠1,则m的取值范围是m>﹣1且m≠1.故选D.【点睛】解题关键是要掌握方程的解的定义,使方程成立的未知数的值叫做方程的解.要注意分母不能为0,这个条件经常忘掉.3、C【详解】由题意知,y与x的函数关系为分段函数.故选C.考点:1.一次函数的应用;2.一次函数的图象.4、B【解析】试题解析:A、∵22+32≠42,∴不能构成直角三角形;B、∵72+242=252,∴能构成直角三角形;C、∵82+122≠202,∴不能构成直角三角形;D、∵52+132≠152,∴不能构成直角三角形.故选B.5、B【分析】由直线解析式可知:该直线过定点(﹣1,0),画出图形,由图可知:在直线CD和直线CE之间,两侧格点相同,再根据E、D两点坐标求k的取值【详解】解:∵直线y=﹣k(x+1)过定点(﹣1,0),分布在直线y=﹣k(x+1)两侧的格点数相同,由正方形的对称性可知,直线y=﹣k(x+1)两侧的格点数相同,∴在直线CD和直线CE之间,两侧格点相同,(如图)∵E(﹣3,3),D(﹣3,4),∴﹣1<﹣k<﹣,则<k<1.故选B.【点睛】此题考查的是一次函数与图形问题,根据一次函数的图像与点的坐标的位置关系求k的取值是解决此题的关键.6、B【分析】本题应先假定选择哪块,再对应三角形全等判定的条件进行验证.【详解】1、3、4块玻璃不同时具备包括一完整边在内的三个证明全等的要素,所以不能带它们去,只有第2块有完整的两角及夹边,符合ASA,满足题目要求的条件,是符合题意的.故选B.【点睛】此题考查全等三角形的应用,解题关键在于掌握判定定理.7、D【分析】本题先求与x轴的交点,之后将交点坐标代入即可求得b的值.【详解】解:在函数中当时,求得,故交点坐标为,将代入,求得;选:D.【点睛】本题注意先求出来与x轴的交点,这是解题的关键.8、C【解析】试题分析:已知OA=OB,∠DOA=∠COB,OC=OD,即可得△OAD≌△OBC,所以∠ADB=∠BCA,AD=BC,再由OA=OB,OC=OD,易得AC=-BD,又因AB=BA,利用SSS即可判定△ABD≌△BAC,同理可证△ACD≌△BDC,故答案选C.考点:全等三角形的判定及性质.9、A【解析】试题分析:能够运用平方差公式分解因式的多项式必须是二项式,两项都能写成平方的形式,且符号相反.根据平方差公式的特点可得到只有A可以运用平方差公式分解,故选A.考点:因式分解-运用公式法.10、C【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】∵1纳米=10﹣9米,∴16纳米表示为:16×10﹣9米=1.6×10﹣8米.故选C.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.二、填空题(每小题3分,共24分)11、1,5,10,10,5,1a4﹣4a3b+6a2b2﹣4ab3+b4【分析】经过观察发现,这些数字组成的三角形是等腰三角形,两腰上的数都是1,从第3行开始,中间的每一个数都等于它肩上两个数字之和,展开式的项数比它的指数多1.根据上面观察的规律很容易解答问题.【详解】(a+b)5=a5+5a4b+10a3b2+10a2b3+5ab4+b5.(a﹣b)4=a4﹣4a3b+6a2b2﹣4ab3+b4.故答案为:1、5、10、10、5、1,a4﹣4a3b+6a2b2﹣4ab3+b4.【点睛】此题考查完全平方公式,正确观察已知的式子与对应的三角形之间的关系是关键.12、1【分析】画出图形即可求解.【详解】解:如图所示:五边形的对角线共有=1(条).故答案为:1.【点睛】本题考查多边形的对角线,解题关键是n边形从一个顶点出发的对角线有(n-3)条.13、.【分析】根据题意画出图形,再根据面积的和差即可求出答案.【详解】如图所示,则AB,AC,BC,∴S△ABC=S矩形DEFC﹣S△ABE﹣S△ADC﹣S△BFC=20ab.故答案为:.【点睛】本题考查勾股定理的应用,解题的关键是熟练运用勾股定理,本题属于基础题型14、<.【分析】先求出4=,,再比较即可.【详解】∵,,∴4<,故答案为:<.【点睛】本题考查了实数的大小比较,能选择适当的方法比较两个实数的大小是解此题的关键.15、<>【分析】先比较3和4的大小,再比较和2的大小;两个负实数绝对值大的反而小,据此判断即可.【详解】∵,∴;∵,∴,故答案为:;.【点睛】本题主要考查了实数大小比较的方法,要熟练掌握,解答此题的关键是要明确:正实数>0>负实数,两个负实数绝对值大的反而小.16、>【解析】解:∵,,∴.故答案为>.17、1【分析】先分析出小明家距学校10米,小明从学校步行回家的时间是15-5=10(分),再根据路程、时间、速度的关系即可求得.【详解】解:通过读图可知:小明家距学校10米,小明从学校步行回家的时间是15-5=10(分),
所以小明回家的速度是每分钟步行10÷10=1(米).
故答案为:1.【点睛】本题主要考查了函数图象,先得出小明家与学校的距离和回家所需要的时间,再求解.18、0.7【分析】根据方差的意义与求法将第一组数据中的的值求出来,再代入第二组数据求方差即可.但仔细观察可以发现,第二组数据每一个数都是在第一组数据的基础上加10,其波动情况并没有发生变化,故方差没有变化,也是0.7.【详解】解:根据方差的意义,第二组数据每一个数都是在第一组数据基础上加了10,波动情况没有发生变化,故其方差也为0.7.故答案为:0.7.【点睛】本题主要考查了方差的意义,深刻理解其意义是解答关键.三、解答题(共66分)19、(1);(2)见解析【分析】(1)在△CDE中根据等腰三角形的性质和三角形内角和定理得到∠ECD的度数.在△ACD中,根据三角形外角的性质即可得出结论;(2)在△CDE中,根据等腰三角形的性质得到∠ECD=∠CED,进而得到∠ECD+∠CDB=90°.由∠ECD+∠DCB=90°,得到∠DCB=∠BDC.由∠DCB+∠BDC=∠ABC=45°,得到∠DCB=∠BDC=22.5°,得到∠ECD=∠CED=67.5°,得到∠EDC=45°.由EF⊥DC于点F,得到∠DEF=∠EDC=45°,即有EF=DF,∠EDG=∠EGD=67.5°,根据等角对等边得到EG=ED,等量代换得到EG=DC,即可得到结论.【详解】∵等腰中,,,∴.又∵CD=DE,,∴,∴;(2)∵CD=DE,∴.又∵,∴.∵,∴.∵,∴,∴,∴.∵于点,∴,∴,,∴,∴,∴,∴.【点睛】本题考查了等腰三角形的判定与性质.灵活运用等腰三角形的性质及三角形外角的性质是解答本题的关键.20、(1)证明见解析;(2)∠ABE=40°.【分析】(1)由四边形ABCD是平行四边形,点E为AD的中点,易证得△DEC≌△AEF(AAS),继而可证得DC=AF,又由DC=AB,证得结论;(2)由(1)可知BF=2AB,EF=EC,然后由∠BCD=100°求得BE平分∠CBF,继而求得答案.【详解】证明:(1)∵四边形ABCD是平行四边形,∴CD=AB,CD∥AB,∴∠DCE=∠F,∠FBC+∠BCD=180°,∵E为AD的中点,∴DE=AE.在△DEC和△AEF中,,∴△DEC≌△AEF(AAS).∴DC=AF.∴AB=AF;(2)由(1)可知BF=2AB,EF=EC,∵∠BCD=100°,∴∠FBC=180°﹣100°=80°,∵BC=2AB,∴BF=BC,∴BE平分∠CBF,∴∠ABE=∠FBC=×80°=40°【点睛】本题考查了平行四边形的性质、全等三角形的判定与性质以及等腰三角形的性质,证得△DEC≌△AEF和△BCF是等腰三角形是关键.21、(1);(2)【分析】(1)直接提取公因式,再利用平方差公式分解因式即可;(2)直接提取公因式-y,再利用完全平方公式分解因式即可.【详解】解:(1)(2)【点睛】本题主要考查了提取公因式法以及公式法分解因式,正确应用公式是解题关键.22、详见解析【分析】根据题意分别延长CE、BA,并交于F点,由BE平分∠ABC,CE⊥BE,得到△BCF为等腰三角形,FC=2EC;易证得Rt△ABD≌Rt△ACF,则根据全等三角形的性质,BD=CF,进而分析即可得到结论.【详解】解:证明:分别延长,并交于点,如图:平分,为等腰三角形,三线合一可知E为FC的中点即,,,而,,,∵,∴.【点睛】本题考查等腰三角形的判定与性质以及三角形全等的判定与性质,熟练掌握等腰三角形三线合一的性质即等腰三角形底边上的高,中线和顶角的角平分线三线合一.23、(1),,;(2)是等腰三角形,证明见解析.【分析】(1)根据等腰三角形的性质和垂直平分线的性质可得,设∠,利用三角形的内角和定理列出方程即可求出x的值,从而求出的各内角的度数;(2)利用ASA即可证出,从而得出结论.【详解】解:(1)∵,∴.∵平分,∴.∵点在的垂直平分线上,∴,∴,∴.设∠,∴,∴,∴,∴,,.(2)是等腰三角形.证明:∵平分,∴.∵,∴.在△EBH和△NBH中∴,∴,∴是等腰三角形.【点睛】此题考查的是等腰三角形的性质及判定、垂直平分线的性质、三角形的内角和定理和全等三角形的判定及性质,掌握等边对等角、等腰三角形的定义、垂直平分线的性质、三角形的内角和定理、全等三角形的判定及性质和方程思想是解决此题的关键.24、(1)见解析;(2);(3)见解析.【分析】(1)根据图形的对称性,分别作三点关于轴对称的点,连接三点即得所求图形;(2)根据图形和条件可以得出是等腰直角三角形,由勾股定理求出直角边长,通过面积公式计算即得;(3)根据等腰三角形三线合一,找到点关于直线的对称点,连接即得.【详解】(1)作图如下:由点的对称性,作出对称的顶点,连接的所求作图形;(2)由题意可知,为等腰直角三角形,由勾股定理可得,,故答案为:;(3)作图如下,作线段EF交AC于点D,则点D为AC中点,由等腰三角形性质,三线合一可知,连接即为的平分线.【点睛】考查了对称的性质,等腰直角三角形的面积求法,勾股定理得应用以及等腰三角形的三线合一的性质,熟记几何图形性质是做题的关键.25、(1)见解析;(2)△ACF是等腰三角形,△ADG是等腰三角形,△DEF是等腰三角形,△ECD是等腰三角形.【分析】(1)由“SAS”可证△ACD≌△ABE,可得BE=CD
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 高精度制版辊生产项目建筑工程方案
- 工程项目招投标管理方案
- 城市道路照明设计方案
- 环境保护与管理方案
- 水景观设计与工程实施方案
- 低碳排放建筑设计与施工方案
- 激励学生心理调适与田径表现的关系研究
- 初中生劳动能力与传统文化认知的互动关系
- 2025年安全生产管理人员基础试题及答案
- 瓦工职业技能理论试题及答案
- 2025年江苏省国家公务员考录《行测》真题及参考答案
- 2025年电力系统工程师高级专业试题及答案
- 屠宰场突发安全生产事故应急预案
- 2025年电商平台新业态发展趋势与运营策略研究报告
- 2025中粮集团社会招聘7人笔试历年参考题库附带答案详解
- 海南自贸港考试题及答案
- 交换机教学课件
- 四川产业振兴基金投资集团有限公司招聘笔试真题2024
- 2025年初级药师资格考试试题(附答案)
- 2025广东云浮市检察机关招聘劳动合同制司法辅助人员17人备考考试题库附答案解析
- 人工智能与建筑产业体系智能化升级研究报告
评论
0/150
提交评论