四川省成都市都江堰市2026届数学八年级第一学期期末达标检测试题含解析_第1页
四川省成都市都江堰市2026届数学八年级第一学期期末达标检测试题含解析_第2页
四川省成都市都江堰市2026届数学八年级第一学期期末达标检测试题含解析_第3页
四川省成都市都江堰市2026届数学八年级第一学期期末达标检测试题含解析_第4页
四川省成都市都江堰市2026届数学八年级第一学期期末达标检测试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

四川省成都市都江堰市2026届数学八年级第一学期期末达标检测试题测试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题3分,共30分)1.在平面直角坐标系中,将点向上平移3个单位长度,再向左平移2个单位长度,得到点,则点所在象限为()A.第一象限 B.第二象限 C.第三象限 D.第四象限2.如图,AB=AC,AD=AE,BE,CD交于点O,则图中全等的三角形共有()A.0对 B.1对 C.2对 D.3对3.如图,AB=AD,要说明△ABC≌△ADE,需添加的条件不能是()A.∠E=∠C B.AC=AE C.∠ADE=∠ABC D.DE=BC4.如图,两车从南北方向的路段的端出发,分别向东、向西行进相同的距离到达两地,若与的距离为千米,则与的距离为()A.千米 B.千米 C.千米 D.无法确定5.某天小明骑自行车上学,途中因自行车发生故障,修车耽误了一段时间后继续骑行,按时赶到了学校.图中描述了他上学的途中离家距离(米)与离家时间(分钟)之间的函数关系.下列说法中正确的个数是()(1)修车时间为15分钟;(2)学校离家的距离为4000米;(3)到达学校时共用时间为20分钟;(4)自行车发生故障时离家距离为2000米.A.1个 B.2个 C.3个 D.4个6.下列实数中,属于无理数的是()A. B.2﹣3 C.π D.7.下列各点中,在函数图像上的是()A. B. C. D.8.等腰三角形的一个外角是100°,则它的顶角的度数为()A.80° B.80°或50° C.20° D.80°或20°9.下列命题:①同旁内角互补,两直线平行;②若,则;③对角线互相垂直平分的四边形是正方形;④对顶角相等.其中逆命题是真命题的有()A.1个 B.2个 C.3个 D.4个10.图(1)是一个长为2m,宽为2n(m>n)的长方形,用剪刀沿图中虚线(对称轴)剪开,把它分成四块形状和大小都一样的小长方形,然后按图(2)那样拼成一个正方形,则中间空的部分的面积是()A.2mn B.(m+n)2 C.(m-n)2 D.m2-n2二、填空题(每小题3分,共24分)11.如图,直线经过原点,点在轴上,于.若A(4,0),B(m,3),C(n,-5),则______.12.如图,中,cm,cm,cm,是边的垂直平分线,则的周长为______cm.13.计算的结果等于.14.如图,在中,,,,则的度数为______°.15.多项式加上一个单项式后能称为一个完全平方式,请你写出一个符合条件的单项式__________.16.如图,在一张长为7cm,宽为5cm的矩形纸片上,现要剪下一个腰长为4cm的等腰三角形(要求:等腰三角形的一个顶点与矩形的一个顶点重合,其余的两个顶点在矩形的边上),则剪下的等腰三角形的面积为_____.17.分解因式:_______18.用如图所示的正方形和长方形卡片若干张,拼成一个长为3a+2b,宽为2a+b的大长方形,需要B类卡片_____张.三、解答题(共66分)19.(10分)先化简,再从1,0,-1,2中任选一个合适的数作为的值代入求值.20.(6分)如图,△ABC中,点D在AC边上,AE∥BC,连接ED并延长ED交BC于点F,若AD=CD,求证:ED=FD.21.(6分)解答下列各题:(1)计算:.(2)解方程:.22.(8分)(1)计算:(11a3﹣6a1+3a)÷3a﹣1;(1)因式分解:﹣3x3+6x1y﹣3xy1.23.(8分)按要求完成下列作图,不要求写作法,只保留作图痕迹.(1)已知:线段AB,作出线段AB的垂直平分线MN.(2)已知:∠AOB,作出∠AOB的平分线OC.(3)已知:线段a和b,求作:等腰三角形,使等腰三角形的底边长为a,底边上的高的长为b.24.(8分)甲、乙两班参加植树活动.乙班先植树30棵,然后甲班才开始与乙班一起植树.设甲班植树的总量为(棵),乙班植树的总量为(棵),、与甲班植树的时间x(时),之间的部分函数图象如图所示.(1)当时,分别求、与x之间的函数关系式;(2)若甲班植树6个小时后,该班仍保持原来的工作效率,乙班则通过加人数提高了工作效率,这样又植树2小时后,两班植树的总量相差20棵,求乙班增加人数后平均每小时植树多少棵?25.(10分)甲、乙两台机器共同加工一批零件,一共用了小时.在加工过程中乙机器因故障停止工作,排除故障后,乙机器提高了工作效率且保持不变,继续加工.甲机器在加工过程中工作效率保持不变.甲、乙两台机器加工零件的总数(个)与甲加工时间之间的函数图象为折线,如图所示.(1)这批零件一共有个,甲机器每小时加工个零件,乙机器排除故障后每小时加工个零件;(2)当时,求与之间的函数解析式;(3)在整个加工过程中,甲加工多长时间时,甲与乙加工的零件个数相等?26.(10分)计算:(1)﹣12019+﹣(2)(﹣3x2y)2•2x3÷(﹣3x3y4)(3)x2(x+2)﹣(2x﹣2)(x+3)(4)()2019×(﹣2×)2018

参考答案一、选择题(每小题3分,共30分)1、B【分析】根据点的坐标平移规律:横坐标左减右加,纵坐标上加下减,即可求出点B的坐标,从而判断出所在的象限.【详解】解:∵将点向上平移3个单位长度,再向左平移2个单位长度,得到点∴点B的坐标为∴点B在第二象限故选B.【点睛】此题考查的是平面直角坐标系中点的平移,掌握点的坐标平移规律:横坐标左减右加,纵坐标上加下减是解决此题的关键.2、C【分析】由“SAS”可证△ABE≌△ACE,可得∠B=∠C,由“AAS”可证△BDO≌△CEO,即可求解.【详解】解:∵AB=AC,∠A=∠A,AD=AE,∴△ABE≌△ACE(SAS)∴∠B=∠C,∵AB=AC,AD=AE,∴BD=CE,且∠B=∠C,∠BOD=∠COE,∴△BDO≌△CEO(AAS)∴全等的三角形共有2对,故选:C.【点睛】本题考查三角形全等的性质,熟练掌握全等三角形的判定定理是解题关键.3、D【解析】∵AB=AD,且∠A=∠A,∴当∠E=∠C时,满足AAS,可证明△ABC≌△ADE,当AC=AE时,满足SAS,可证明△ABC≌△ADE,当∠ADE=∠ABC时,满足ASA,可证明△ABC≌△ADE,当DE=BC时,满足SSA,不能证明△ABC≌△ADE,故选D.4、A【分析】先由条件证明,再根据全等三角形的性质即可得出结论.【详解】解:由题意得:AC=AD,,∴在和中∴∴∴与的距离为千米故选:A.【点睛】本题全等三角形的应用,读懂图信息,将文字语言转化为几何语言是解题关键.5、C【分析】(1)根据图象中平行于x轴的那一段的时间即可得出答案;(2)根据图象的纵轴的最大值即可得出答案;(3)根据图象的横轴的最大值即可得出答案;(4)根据图象中10分钟时对应的纵坐标即可判断此时的离家距离.【详解】(1)根据图象可知平行于x轴的那一段的时间为15-10=5(分钟),所以修车时间为5分钟,故错误;(2)根据图象的纵轴的最大值可知学校离家的距离为4000米,故正确;(3)根据图象的横轴的最大值可知到达学校时共用时间为20分钟,故正确;(4)根据图象中10分钟时对应的纵坐标为2000,所以自行车发生故障时离家距离为2000米,故正确;所以正确的有3个.故选:C.【点睛】本题主要考查一次函数的应用,读懂函数的图象是解题的关键.6、C【分析】无理数就是无限不循环小数.【详解】解:是分数可以化为无限循环小数,属于有理数,故选项A不合题意;,是分数,属于有理数,故选项B不合题意;π是无理数,故选项C符合题意;,是整数,故选项D不合题意.故选:C.【点睛】理解无理数的概念,同时也需要理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.7、B【解析】把选项逐一代入函数判断,即可得到答案.【详解】∵,∴点不在函数图像上,∵,∴点在函数图像上,∵,∴点不在函数图像上,∵,∴点不在函数图像上,故选B.【点睛】本题主要考查一次函数图象上的点,掌握图象上的点的坐标满足函数解析式,是解题的关键.8、D【分析】根据邻补角的定义求出与外角相邻的内角,再根据等腰三角形的性质分情况解答.【详解】∵等腰三角形的一个外角是100°,∴与这个外角相邻的内角为180°−100°=80°,当80°为底角时,顶角为180°-160°=20°,∴该等腰三角形的顶角是80°或20°.故答案选:D.【点睛】本题考查了等腰三角形的性质,解题的关键是熟练的掌握等腰三角形的性质.9、B【分析】首先写出各个命题的逆命题,然后进行判断即可.【详解】解:①同旁内角互补,两直线平行,其逆命题:两直线平行,同旁内角互补是真命题;

②若,则,其逆命题:若,则是假命题;③对角线互相垂直平分的四边形是正方形,其逆命题:正方形的对角线互相垂直平分是真命题;

④对顶角相等,其逆命题:相等的角是对顶角是假命题;

故选:B.【点睛】本题考查了命题与定理,判断一件事情的语句,叫做命题,也考查了逆命题.10、C【详解】解:由题意可得,正方形的边长为(m+n),故正方形的面积为(m+n)1.又∵原矩形的面积为4mn,∴中间空的部分的面积=(m+n)1-4mn=(m-n)1.故选C.二、填空题(每小题3分,共24分)11、【分析】作三角形的高线,根据坐标求出BE、OA、OF的长,利用面积法可以得出BC•AD=1.【详解】解:过B作BE⊥x轴于E,过C作CF⊥y轴于F,∵B(m,3),∴BE=3,∵A(4,0),∴AO=4,∵C(n,-5),∴OF=5,∵S△AOB=AO•BE=×4×3=6,S△AOC=AO•OF=×4×5=10,∴S△AOB+S△AOC=6+10=16,∵S△ABC=S△AOB+S△AOC,∴BC•AD=16,∴BC•AD=1,故答案为:1.【点睛】本题考查了坐标与图形性质,根据点的坐标表示出对应线段的长,面积法在几何问题中经常运用,要熟练掌握;本题根据面积法求出线段的积.12、16【解析】根据垂直平分线的性质得到AD=BD,AE=BE,再根据三角形的周长组成即可求解.【详解】∵是边的垂直平分线,∴AD=BD,AE=BE∴的周长为AD+CD+AC=BD+CD+AC=BC+AC=10+6=16cm,故填16.【点睛】此题主要考查垂直平分线的性质,解题的关键是熟知垂直平分线的性质.13、【分析】根据立方根的定义求解可得.【详解】解:=.故答案为.【点睛】本题主要考查立方根,掌握立方根的定义是解题的关键.14、65【分析】根据等腰三角形的三线合一求出∠ADB=90°,进而求出∠B的度数,根据等边对等角求出∠C的度数.【详解】∵AB=AC,BD=CD∴AD⊥BC∴∠ADB=90°∵∠BAD=25°∴∠B=90°-∠BAD=65°∴∠C=∠B=65°故答案为:65【点睛】本题考查了等腰三角形的性质及直角三角形的两个锐角互余,掌握等腰三角形的性质及直角三角形的性质是关键.15、12n【分析】首末两项是3n和2这两个数的平方,那么中间一项为加上或减去2x和1积的2倍,据此解答即可.【详解】由题意得,可以添加12n,此时,符合题意.故答案为:12n(答案不唯一).【点睛】本题考查了完全平方公式,熟练掌握完全平方公式(a±b)2=a2±2ab+b2是解答本题的关键.16、8或2或2【详解】分三种情况计算:(1)当AE=AF=4时,如图:∴S△AEF=AE•AF=×4×4=8;(2)当AE=EF=4时,如图:则BE=5﹣4=1,BF=,∴S△AEF=•AE•BF=×4×=2;(3)当AE=EF=4时,如图:则DE=7﹣4=3,DF=,∴S△AEF=AE•DF=×4×=2;17、【解析】=2()=.故答案为.18、1.【分析】先求出长为3a+2b,宽为2a+b的矩形面积,然后对照A、B、C三种卡片的面积,进行组合.【详解】解:长为3a+2b,宽为2a+b的矩形面积为(3a+2b)(2a+b)=6a2+1ab+2b2,A图形面积为a2,B图形面积为ab,C图形面积为b2,则可知需要A类卡片6张,B类卡片1张,C类卡片2张.故答案为:1.【点睛】本题主要考查多项式乘法的应用,正确的计算多项式乘法是解题的关键.三、解答题(共66分)19、;选x=0时,原式=或选x=2时,原式=(任选其一即可)【分析】先根据分式的各个运算法则化简,然后从给出的数中选择一个使原分式有意义的数代入即可.【详解】解:===根据分式有意义的条件,原分式中当选x=0时,原式=;当选x=2时,原式=.【点睛】此题考查的是分式的化简求值题和分式有意义的条件,掌握分式的各个运算法则和分式有意义的条件是解决此题的关键.20、见解析【分析】由平行可得内错角相等,再利用ASA即可判定△ADE≌△CDF,所以ED=FD.【详解】证明:∵AE∥BC∴∠EAD=∠C在△ADE和△CDF中,∴△ADE≌△CDF(ASA)∴ED=FD【点睛】本题考查全等三角形的判定和性质,比较简单,找到全等条件即可.21、(1);(2)【分析】(1)利用二次根式的乘法法则运算;(2)先去分母得到,然后解整式方程后进行检验确定原方程的解.【详解】解:(1)原式.(2),解得,经检验,原方程的解为.【点睛】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后合并同类二次根式即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.也考查了解分式方程.22、(1)4a1-1a;(1)-3(x-y)1【分析】(1)根据多项式除单项式先用多项式的每一项除以单项式,再把所得的商相加,计算即可;(1)先提取公因式-3x,再对余下的多项式利用完全平方公式继续分解.【详解】解:(1)原式=4a1﹣1a+1﹣1=4a1﹣1a;(1)原式=﹣3x(x1﹣1xy+y1)=﹣3(x﹣y)1.23、(1)见解析;(2)见解析;(3)见解析【分析】(1)分别以A、B为圆心,以大于AB为半径画弧,两弧交于两点,过这两点作直线即可;

(2)根据已知角的角平分线画法,画出即可;(3)作AB=a,作AB的垂直平分线MN,垂足为D,在DM上截取DC=b,连接AC、BC,即可得等腰三角形.【详解】(1)如图所示,直线MN即为所求.(2)如图所示,OC即为所求作的∠AOB的平分线.(3)如图△ABC即为所求.【点睛】本题考查线段垂直平分线和角平分线的画法、作一条直线等于已知直线等知识点,熟悉线段垂直平分线的作法和等腰三角形的判定和性质.能正确画出图形是解题关键.24、(1)y甲=1x,y乙=10x+30;(2)乙班增加人数后平均每小时植树45棵或2棵.【分析】(1)通过看图,分析各数据,利用待定系数法即可求得函数关系式;(2)相差1棵有两种情况,可以是甲比乙多,也可以是乙比甲多,据此分别列出方程求解即可.【详解】解:(1)设y甲=k1x,将(6,11)代入,得k1=1;

∴y甲=1x;

当x=3时,y甲=60,

设y乙=k2x+b,分别将(0,30),(3,60),解得:,故y乙=10x+30;(2)设乙班增加人数后平均每小时植树a棵.

当乙班比甲班多植树1棵时,有(6×10+30+2a)-1×8=1.

解得a=45;

当甲班比乙班多植树1棵时,有1×8-(6×10+30+2a)=1.

解得a=2.

所以乙班增加人数后平均每小时植树45棵或2棵.【点睛】本题考查一次函数的应用.(1)读懂图象信息,用待定系数法求函数解析式.(2)植树总量相差1棵要分

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论