2026届江苏省江阴市长寿中学数学九上期末综合测试模拟试题含解析_第1页
2026届江苏省江阴市长寿中学数学九上期末综合测试模拟试题含解析_第2页
2026届江苏省江阴市长寿中学数学九上期末综合测试模拟试题含解析_第3页
2026届江苏省江阴市长寿中学数学九上期末综合测试模拟试题含解析_第4页
2026届江苏省江阴市长寿中学数学九上期末综合测试模拟试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2026届江苏省江阴市长寿中学数学九上期末综合测试模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,点M是AB上的一点,点N是CB上的一点,,当∠CAN与△CMB中的一个角相等时,则BM的值为()A.3或4 B.或4 C.或6 D.4或62.如图,AB⊥OB,AB=2,OB=4,把∠ABO绕点O顺时针旋转60°得∠CDO,则AB扫过的面积(图中阴影部分)为()A.2 B.2π C.π D.π3.如图,在中,,AB=5,BC=4,点D为边AC上的动点,作菱形DEFG,使点E、F在边AB上,点G在边BC上.若这样的菱形能作出两个,则AD的取值范围是()A. B.C. D.4.如图,在△ABC中,∠C=90°,∠BAC=70°,将△ABC绕点A顺时针旋转70°,B,C旋转后的对应点分别是B′和C′,连接BB′,则∠ABB′的度数是()A.35° B.40° C.45° D.55°5.如图,在直线上有相距的两点和(点在点的右侧),以为圆心作半径为的圆,过点作直线.将以的速度向右移动(点始终在直线上),则与直线在______秒时相切.A.3 B.3.5 C.3或4 D.3或3.56.若关于的方程有两个不相等的实数根,则的取值范围是()A. B. C. D.7.如图,我国传统文化中的“福禄寿喜”图由四个图案构成,这四个图案中是中心对称图形的是()A. B. C. D.8.顺次连接矩形各边中点得到的四边形是()A.平行四边形 B.矩形 C.菱形 D.正方形9.在Rt△ABC中,∠C=90°.若AC=2BC,则sinA的值是()A. B. C. D.210.若将抛物线y=5x2先向右平移2个单位,再向上平移1个单位,得到的新抛物线的表达式为()A.y=5(x﹣2)2+1 B.y=5(x+2)2+1 C.y=5(x﹣2)2﹣1 D.y=5(x+2)2﹣1二、填空题(每小题3分,共24分)11.已知线段a=4cm,b=9cm,则线段a,b的比例中项为_________cm.12.如图,将含有45°角的直角三角板ABC(∠C=90°)绕点A顺时针旋转30°得到△AB′C′,连接BB′,已知AC=2,则阴影部分面积为_____.13.如图,已知反比例函数的图象经过斜边的中点,与直角边相交于点.若的面积为8,则的值为________.14.一个扇形的弧长是,面积是,则这个扇形的圆心角是___度.15.如图,已知⊙O是△ABC的外接圆,若∠BOC=100°,则∠BAC=______.16.在平面直角坐标系中,抛物线y=x2如图所示,已知A点坐标为(1,1),过点A作AA1∥x轴交抛物线于点A1,过点A1作A1A2∥OA交抛物线于点A2,过点A2作A2A3∥x轴交抛物线于点A3,过点A3作A3A4∥OA交抛物线于点A4,过点A4作A4A5∥x轴交抛物线于点A5,则点A5的坐标为_____.17.抛物线y=5(x﹣4)2+3的顶点坐标是_____.18.如图,点,,,在上,,,,则________.三、解答题(共66分)19.(10分)某文物古迹遗址每周都吸引大量中外游客前来参观,如果游客过多,对文物古迹会产生不良影响,但同时考虑到文物的修缮和保存费用的问题,还要保证有一定的门票收入,因此遗址的管理部门采取了升、降门票价格的方法来控制参观人数.在实施过程中发现:每周参观人数y(人)与票价x(元)之间恰好构成一次函数关系:y=﹣500x+1.在这样的情况下,如果要确保每周有40000元的门票收入,那么门票价格应定为多少元?20.(6分)一不透明的布袋里,装有红、黄、蓝三种颜色的小球(除颜色外其余都相同),其中有红球2个,篮球1个,黄球若干个,现从中任意摸出一个球是红球的概率为.(1)求口袋中黄球的个数;(2)甲同学先随机摸出一个小球(不放回),再随机摸出一个小球,请用“树状图法”或“列表法”,求两次摸出都是红球的概率;(3)现规定:摸到红球得5分,摸到黄球得3分(每次摸后放回),乙同学在一次摸球游戏中,第一次随机摸到一个红球第二次又随机摸到一个蓝球,若随机,再摸一次,求乙同学三次摸球所得分数之和不低于10分的概率.21.(6分)某商品现在的售价为每件60元,每星期可卖出300件.市场调查反映:如调整价格,每降价1元,每星期可多卖出20件.已知商品的进价为每件40元,如何定价才能使利润最大?这个最大利润是多少?22.(8分)图中是抛物线形拱桥,当水面宽为4米时,拱顶距离水面2米;当水面高度下降1米时,水面宽度为多少米?23.(8分)如图,在平面直角坐标系中,过点M(0,2)的直线l与x轴平行,且直线l分别与反比例函数y=(x>0)和y=(x<0)的图象分别交于点P,Q.(1)求P点的坐标;(2)若△POQ的面积为9,求k的值.24.(8分)某中学课外兴趣活动小组准备围建一个矩形苗圃园,其中一边靠墙,另外三边由长为40米的篱笆围成.已知墙长为18米(如图所示),设这个苗圃园垂直于墙的一边长为x米.(1)若苗圃园的面积为102平方米,求x;(2)若使这个苗圃园的面积最大,求出x和面积最大值.25.(10分)解方程:(x+2)(x-5)=1.26.(10分)如图,直线y=x+b与双曲线y=(k为常数,k≠0)在第一象限内交于点A(1,2),且与x轴、y轴分别交于B,C两点.(1)求直线和双曲线的解析式;(2)点P在x轴上,且△BCP的面积等于2,求P点的坐标.

参考答案一、选择题(每小题3分,共30分)1、D【分析】分两种情形:当时,,设,,可得,解出值即可;当时,过点作,可得,得出,,则,证明,得出方程求解即可.【详解】解:在Rt△ABC中,∠ACB=90°,AC=1,BC=8,∴,AB=10,,设,,①当时,可得,,,,.②当时,如图2中,过点作,可得,,,,,,,,,,,,.综上所述,或1.故选:D.本题考相似三角形的判定和性质,解题的关键是学会用分类讨论的思想思考问题,学会添加常用辅助线,构造相似三角形解决问题.2、C【解析】根据勾股定理得到OA,然后根据边AB扫过的面积==解答即可得到结论.【详解】如图,连接OA、OC.∵AB⊥OB,AB=2,OB=4,∴OA==,∴边AB扫过的面积====.故选C.本题考查了扇形的面积的计算,勾股定理,熟练掌握扇形的面积公式是解题的关键.3、B【分析】因为在中只能作出一个正方形,所以要作两个菱形则AD必须小于此时的AD,也即这是AD的最大临界值;当AD等于菱形边长时,这时恰好可以作两个菱形,这是AD最小临界值.然后分别在这2种情形下,利用相似三角形的性质求出AD即可.【详解】过C作交DG于M由三角形的面积公式得即,解得①当菱形DEFG为正方形时,则只能作出一个菱形设:,为菱形,,,即,得()若要作两个菱形,则;②当时,则恰好作出两个菱形设:,过D作于H,由①知,,,得综上,故选:B.本题考查了相似三角形的性质、锐角三角函数,依据图形的特点判断出两个临界值是解题关键.4、D【解析】在△ABB'中根据等边对等角,以及三角形内角和定理,即可求得∠ABB'的度数.【详解】由旋转可得,AB=AB',∠BAB'=70°,∴∠ABB'=∠AB'B=(180°-∠BAB′)=55°.故选:D.本题考查了旋转的性质,在旋转过程中根据旋转的性质确定相等的角和相等的线段是关键.5、C【分析】根据与直线AB的相对位置分类讨论:当在直线AB左侧并与直线AB相切时,根据题意,先计算运动的路程,从而求出运动时间;当在直线AB右侧并与直线AB相切时,原理同上.【详解】解:当在直线AB左侧并与直线AB相切时,如图所示∵的半径为1cm,AO=7cm∴运动的路程=AO-=6cm∵以的速度向右移动∴此时的运动时间为:÷2=3s;当在直线AB右侧并与直线AB相切时,如图所示∵的半径为1cm,AO=7cm∴运动的路程=AO+=8cm∵以的速度向右移动∴此时的运动时间为:÷2=4s;综上所述:与直线在3或4秒时相切故选:C.此题考查的是直线与圆的位置关系:相切和动圆问题,掌握相切的定义和行程问题公式:时间=路程÷速度是解决此题的关键.6、D【分析】利用一元二次方程的根的判别式列出不等式即可求出k的取值范围.【详解】解:由题意得=(2k+1)2-4(k2-1)=4k+5>0解得:k>-故选D此题主要考查了一元二次方程的根的判别式,熟记根的判别式是解题的关键.7、B【解析】根据中心对称图形的概念逐一判断即可.【详解】A.不是中心对称图形,故该选项不符合题意,B.是中心对称图形,符合题意,C.不是中心对称图形,故该选项不符合题意,D.不是中心对称图形,故该选项不符合题意,故选:B.本题考查中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后与原图重合.8、C【分析】根据三角形的中位线定理,得新四边形各边都等于原四边形的对角线的一半,进而可得连接对角线相等的四边形各边中点得到的四边形是菱形.【详解】解:如图,矩形中,分别为四边的中点,四边形是平行四边形,四边形是菱形.故选C.本题主要考查了矩形的性质、菱形的判定,以及三角形中位线定理,关键是掌握三角形的中位线定理及菱形的判定.9、C【分析】设BC=x,可得AC=2x,Rt△ABC中利用勾股定理算出AB=x,然后利用三角函数在直角三角形中的定义,可算出sinA的值.【详解】解:由AC=2BC,设BC=x,则AC=2x,

∵Rt△ABC中,∠C=90°,

∴根据勾股定理,得AB=.

因此,sinA=.

故选:C.本题已知直角三角形的两条直角边的关系,求角A的正弦之值.着重考查了勾股定理、三角函数的定义等知识,属于基础题.10、A【解析】试题解析:将抛物线向右平移2个单位,再向上平移1个单位,得到的抛物线的解析式是故选A.点睛:二次函数图像的平移规律:左加右减,上加下减.二、填空题(每小题3分,共24分)11、6【分析】设比例中项为c,得到关于c的方程即可解答.【详解】设比例中项为c,由题意得:,∴,∴c1=6,c2=-6(不合题意,舍去)故填6.此题考查线段成比例,理解比例中项的含义即可正确解答.12、1【分析】在Rt△ABC中,可求出AB的长度,再根据含30°的直角三角形的性质得到AB边上的高,最后由S阴影=S△ABB′结合三角形的面积公式即可得出结论.【详解】过B′作B′D⊥AB于D,在Rt△ABC中,∠C=90°,∠ABC=45°,AC=1,∴AB′=AB=AC=,又∵∠ADB′=90°,∠BAB′=30°,∴B′D=AB′=,∴S阴影=S△ABC+S△ABB′−S△AB′C′=S△ABB′=××=1,故答案为:1.本题考查了旋转的性质、等腰直角三角形的性质以及含30°的直角三角形性质,解题的关键是得出S阴影=S△ABB′.13、【分析】过D点作x轴的垂线交x轴于E点,可得到四边形DBAE和三角形OBC的面积相等,通过面积转化,可求出k的值.【详解】解:过D点作x轴的垂线交x轴于E点,∵△ODE的面积和△OAC的面积相等.的面积与四边形的面积相等,∴四边形DEAB=8,设D点的横坐标为x,纵坐标就为∵D为OB的中点.∴∴四边形DEAB的面积可表示为:∴故答案为:本题考查反比例函数的综合运用,关键是知道反比例函数图象上的点和坐标轴构成的三角形面积的特点以及根据面积转化求出k的值.14、150【分析】根据弧长公式计算.【详解】根据扇形的面积公式可得:,解得r=24cm,再根据弧长公式,解得.故答案为:150.本题考查了弧长的计算及扇形面积的计算,要记熟公式:扇形的面积公式,弧长公式.15、50°【解析】根据圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半得.【详解】解:∵⊙O是△ABC的外接圆,∠BOC=100°,∴∠BAC=∠BOC=×100°=50°.故答案为:50°.本题考查圆周角定理,题目比较简单.16、(﹣3,9)【分析】根据二次函数性质可得出点A1的坐标,求得直线A1A2为y=x+2,联立方程求得A2的坐标,即可求得A3的坐标,同理求得A4的坐标,即可求得A5的坐标.【详解】∵A点坐标为(1,1),∴直线OA为y=x,A1(﹣1,1),∵A1A2∥OA,∴直线A1A2为y=x+2,解得:或,∴A2(2,4),∴A3(﹣2,4),∵A3A4∥OA,∴直线A3A4为y=x+6,解得:或,∴A4(3,9),∴A5(﹣3,9),故答案为:(﹣3,9).本题考查了二次函数图象上点的坐标特征、一次函数的图象以及交点的坐标,根据坐标的变化找出变化规律是解题的关键.17、(4,3)【解析】根据顶点式的坐标特点直接写出顶点坐标.【详解】解:∵y=5(x-4)2+3是抛物线解析式的顶点式,

∴顶点坐标为(4,3).

故答案为(4,3).此题考查二次函数的性质,掌握顶点式y=a(x-h)2+k中,顶点坐标是(h,k)是解决问题的关键.18、70°【分析】根据=,得到,根据同弧所对的圆周角相等即可得到,根据三角形的内角和即可求出.【详解】∵=,∴,∴,∵,∴.故答案为考查圆周角定理和三角形的内角和定理,熟练掌握圆周角定理是解题的关键.三、解答题(共66分)19、门票价格应是20元/人.【分析】根据参观人数×票价=40000元,即可求出每周应限定参观人数以及门票价格.【详解】根据确保每周4万元的门票收入,得xy=40000即x(-500x+1)=40000x2-24x+80=0解得x1=20,x2=4把x1=20,x2=4分别代入y=-500x+1中得y1=2000,y2=10000因为控制参观人数,所以取x=20,答:门票价格应是20元/人.考查了一元二次方程的应用,解题的关键是能够根据题意列出方程,难度不大.20、(1)黄球有1个;(2);(3).【分析】(1)首先设口袋中黄球的个数为x个,根据题意得:,解此方程即可求得答案.(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次摸出都是红球的情况,再利用概率公式即可求得答案.(3)由若随机,再摸一次,求乙同学三次摸球所得分数之和不低于10分的有3种情况,且共有4种等可能的结果;直接利用概率公式求解即可求得答案.【详解】解:(1)设口袋中黄球的个数为x个,根据题意得:,解得:x=1.经检验:x=1是原分式方程的解.∴口袋中黄球的个数为1个.(2)画树状图得:∵共有12种等可能的结果,两次摸出都是红球的有2种情况,∴两次摸出都是红球的概率为:.(3)∵摸到红球得5分,摸到黄球得3分,而乙同学在一次摸球游戏中,第一次随机摸到一个红球第二次又随机摸到一个蓝球,∴乙同学已经得了7分.∴若随机,再摸一次,求乙同学三次摸球所得分数之和不低于10分的有3种情况,且共有4种等可能的结果;∴若随机,再摸一次,求乙同学三次摸球所得分数之和不低于10分的概率为:.21、定价为57.5元时,所获利润最大,最大利润为6125元.【分析】设所获利润为元,每件降价元,先求出降价后的每件利润和销量,再根据“利润=每件利润销量”列出等式,然后根据二次函数的性质求解即可.【详解】设所获利润为元,每件降价元则降价后的每件利润为元,每星期销量为件由利润公式得:整理得:由二次函数的性质可知,当时,y随x的增大而增大;当时,y随x的增大而减小故当时,y取得最大值,最大值为6125元即定价为:元时,所获利润最大,最大利润为6125元.本题考查了二次函数的应用,依据题意正确得出函数的关系式是解题关键.22、【分析】根据已知得出直角坐标系,进而求出二次函数解析式,再根据通过把y=-1代入抛物线解析式得出水面宽度,即可得出答案.【详解】解:建立平面直角坐标系.设二次函数的解析式为(a≠0).∵图象经过点(2,-2),∴-2=4a,解得:.∴.当y=-3时,.答:当水面高度下降1米时,水面宽度为米.此题主要考查了二次函数的应用,根据已知建立坐标系从而得出二次函数解析式是解决问题的关键,难度一般.23、(1)(3,2);(2)k=﹣1【分析】(1)由于PQ∥x轴,则点P的纵坐标为2,然后把y=2代入y=得到对应的自变量的值,从而得到P点坐标;(2)由于S△POQ=S△OMQ+S△OMP,根据反比例函数k的几何意义得到|k|+×|6|=9,然后解方程得到满足条件的k的值.【详解】(1)∵PQ∥x轴,∴点P的纵坐标为2,把y=2代入y=得x=3,∴P点坐标为(3,2);(2)∵S△POQ=S△OMQ+S△OMP,∴|k|+×|6|=9,∴|k|=1,而k<0,∴k=﹣1.本题主要考查了反比例函数的图象与性质,掌握反比例函数k的几何意义是解题的关键.24、(1)x=17;(2)当x=11米时,这个苗圃园的面积最大,最大值为198平方米.【分析】(1)根据题意列出方程,解出方程即可;(2)设苗圃园的面积为y平方米,用x表达出y,得到二次函数表达式,根据二次函数的

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论