




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
江苏省泗洪县2026届数学八年级第一学期期末达标检测模拟试题测模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每小题3分,共30分)1.比较2,,的大小,正确的是()A. B.C. D.2.如图,一块直径为a+b的圆形钢板,从中挖去直径分别为a与b的两个圆,则剩余阴影部分面积为()A. B. C. D.3.若数据5,-3,0,x,4,6的中位数为4,则其众数为()A.4 B.0 C.-3 D.4、54.如图,在Rt△ABC中,∠C=90°,AC=9,BC=12,则点C到AB的距离是()A. B. C. D.5.以下列各组线段为边,能组成三角形的是().A.2cm,3cm,5cm B.5cm,6cm,10cmC.1cm,1cm,3cm D.3cm,4cm,9cm6.已知一个等腰三角形的腰长是,底边长是,这个等腰三角形的面积是()A. B. C. D.7.是一个完全平方式,则k等于()A. B.8 C. D.48.下列图形中有稳定性的是()A.平行四边形 B.长方形 C.正方形 D.直角三角形9.将点M(-5,y)向上平移6个单位长度后得到的点与点M关于x轴对称,则y的值是()A.-6 B.6 C.-3 D.310.如图,等边边长为,将沿向右平移,得到,则四边形的周长为()A. B. C. D.二、填空题(每小题3分,共24分)11.如图,AB∥CD,BP和CP分别平分∠ABC和∠DCB,AD过点P,且与AB垂直.若AD=6,则点P到BC的距离是_______.12.已知三角形的三边分别为a,b,c,其中a,b满足,那么这个三角形的第三边c的取值范围是____.13.在△ABC中,已知∠A=60°,∠B=80°,则∠C的外角的度数是________.14.在△ABC中,AB=AD=CD,且∠C=40°,则∠BAD的度数为__________.15.当x______时,分式无意义.16.如图,在一个长为8cm,宽为5cm的长方形草地上,放着一根长方体的木块,它的棱和草地宽AD平行且棱长大于AD,木块从正面看是边长为2cm的正方形,一只蚂蚁从点A处到达点C处需要走的最短路程是_____.17.如图,在矩形ABCD中,对角线AC、BD相交于点O,点E、F分别是AO、AD的中点,若AB=6cm,BC=8cm,则△AEF的周长=cm.18.若m>n,则m-n_____0.(填“>”“<”“=”)三、解答题(共66分)19.(10分)计算:(m+n+2)(m+n﹣2)﹣m(m+4n).20.(6分)化简:(1)(-2ab)(3a2-2ab-4b2);(2)3x(2x-3y)-(2x-5y)·4x.21.(6分)(1)计算:;(2)先化简,再求值:,其中,.22.(8分)如图,在平面直角坐标系中,四边形的顶点是坐标原点,点在第一象限,点在第四象限,点在轴的正半轴上.且,,的长分别是二元一次方程组的解().(1)求点和点的坐标;(2)点是线段上的一个动点(点不与点,重合),过点的直线与轴平行,直线交边或边于点,交边或边于点.设点的横坐标为,线段的长度为.已知时,直线恰好过点.①当时,求关于的函数关系式;②当时,求点的横坐标的值.23.(8分)在四边形中,,,是对角线,于点,于点(1)如图1,求证:(2)如图2,当时,连接、,在不添加任何辅助线的情况下,请直接写出图2中的四个三角形,使写出的每个三角形的面积都等于四边形面积的.24.(8分)某县为落实“精准扶贫惠民政策",计划将某村的居民自来水管道进行改造该工程若由甲队单独施工,则恰好在规定时间内完成;若由乙队单独施工,则完成工程所需天数是规定时间的1.5倍;若由甲、乙两队先合作施工15天,则余下的工程由甲队单独完成还需5天这项工程的规定时间是多少天?25.(10分)如图,中,∠ACB=90°,AB=5cm,BC=3cm,若点P从点A出发,以每秒2cm的速度沿折线A-C-B-A运动,设运动时间为t秒()(1)若点P在AC上,且满足PA=PB时,求出此时t的值;(2)若点P恰好在∠BAC的角平分线上,求的值;(3)当为何值时,为等腰三角形26.(10分)作业中有一题:化简,求值:,其中.小红解答如下:(第一步)(第二步)(第三步)当时,(第四步)(第五步)(第六步)(1)老师说小红计算错误,请指出第几步开始发生错误,并写出正确的过程;(2)如果m从-1、0、1、2中任取一个数代入并求值,你会选择____________,代数式的值是______________.
参考答案一、选择题(每小题3分,共30分)1、C【分析】先分别求出这三个数的六次方,然后比较它们的六次方的大小,即可比较这三个数的大小.【详解】解:∵26=64,,,而49<64<125∴∴故选C.【点睛】此题考查的是无理数的比较大小,根据开方和乘方互为逆运算将无理数化为有理数,然后比较大小是解决此题的关键.2、C【分析】用大圆的面积减去两小圆面积即可.【详解】阴影部分面积为=故选C.【点睛】此题主要考查整式的乘法公式,解题的关键是熟知圆的面积求法.3、A【分析】众数是一组数据中出现次数最多的数据,注意众数可以不止一个.找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数.【详解】∵数据的中位数是1∴数据按从小到大顺序排列为-3,0,1,x,5,6∴x=1则数据1出现了2次,出现次数最多,故众数为1.故选:A.【点睛】本题考查众数与中位数的意义.将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.4、A【分析】首先根据勾股定理求出斜边的长,再根据三角形等面积法求出则点到的距离即可.【详解】设点到距离为.在中,,∴∵,∴∵∴.故选:A.【点睛】本题考查勾股定理应用,抓住三角形面积为定值这个等量关系是解题关键.5、B【分析】根据三角形的三边关系对各选项进行逐一分析即可.【详解】A.∵2+3=5,∴不能组成三角形,故本选项错误;B.∵5+6=11>10,∴能组成三角形,故本选项正确;C.∵1+1=2<3,∴不能组成三角形,故本选项错误;D.∵3+4=7<9,∴不能组成三角形,故本选项错误.故选B.【点睛】本题考查了三角形的三边关系,熟知三角形任意两边之和大于第三边,任意两边之差小于第三边是解答此题的关键.6、D【分析】根据题意画出图形,过点A作AD⊥BC于点D,根据勾股定理求出AD的长,进而可得出结论.【详解】解:如图所示,
过点A作AD⊥BC于点D,
∵AB=AC=5,BC=8,
∴BD=BC=4,
∴AD=,∴S△ABC=BC•AD=×8×3=1.
故选D.【点睛】本题考查的是勾股定理和等腰三角形的性质,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解答此题的关键.7、A【分析】根据完全平方公式:,即可得出结论.【详解】解:∵是完全平方式,∴解得:故选A.【点睛】此题考查的是根据完全平方式,求一次项中的参数,掌握两个完全平方公式的特征是解决此题的关键.8、D【分析】根据三角形具有稳定性解答.【详解】解:根据三角形具有稳定性,可得四个选项中只有直角三角形具有稳定性.故选:D.【点睛】本题考查了三角形具有稳定性,是基础题,需熟记.9、C【分析】直接利用平移的性质得出平移后点的坐标,再利用关于x轴对称点的性质得出答案.【详解】∵点M(-5,y)向上平移6个单位长度,∴平移后的点为:(-5,y+6),∵点M(-5,y)向上平移6个单位长度后所得到的点与点M关于x轴对称,∴y+y+6=0,解得:y=-1.故选:C.【点睛】本题主要考查了关于x轴对称点的性质:横坐标不变,纵坐标变为相反数,正确表示出平移后点的坐标是解题关键.10、B【分析】根据平移的性质易得AD=CF=BE=1,那么四边形ABFD的周长即可求得.【详解】解:∵将边长为1cm的等边△ABC沿边AC向右平移1cm得到△DEF,∴AD=BE=CF=1,各等边三角形的边长均为1.∴四边形ABFD的周长=AD+AB+BE+FE+DF=17cm.故选:B.【点睛】本题考查平移的性质,找出对应边,求出四边形各边的长度,相加即可.二、填空题(每小题3分,共24分)11、3【解析】分析:过点P作PE⊥BC于E,根据角平分线上的点到角的两边的距离相等,可得PA=PE,PD=PE,那么PE=PA=PD,又AD=6,进而求出PE=3.详解:如图,过点P作PE⊥BC于E,∵AB∥CD,PA⊥AB,∴PD⊥CD,∵BP和CP分别平分∠ABC和∠DCB,∴PA=PE,PD=PE,∴PE=PA=PD,∵PA+PD=AD=6,∴PA=PD=3,∴PE=3.故答案为3.点睛:本题考查了角平分线上的点到角的两边距离相等的性质,熟记性质并作辅助线是解题的关键.12、【解析】根据非负数的性质列式求出a、b,再根据三角形的任意两边之和大于第三边,两边只差小于第三边求解即可.【详解】∵,∴=0,b-4=0,∴a=3,b=4,∴4-3<c<4+3,即.故答案是:.【点睛】考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0;三角形的三边关系.13、140°.【解析】∠C的外角=∠A+∠B=60°+80°=140°.故答案为140°.14、20°【分析】根据可得出,再利用三角形外角的性质得出,然后利用得出,最后利用三角形内角和即可求出答案.【详解】故答案为:20°.【点睛】本题主要考查等腰三角形的性质及三角形外角的性质,内角和定理,掌握等腰三角形的性质是解题的关键.15、【解析】由题意得:2x-7=0,解得:x=,故答案为.【点睛】本题考查的是分式无意义,解题的关键是明确分式无意义的条件是分母等于0.16、13cm.【分析】解答此题要将木块展开,然后根据两点之间线段最短解答.【详解】由题意可知,将木块展开,相当于是AB+2个正方形的宽,∴长为8+2×2=12cm;宽为5cm.于是最短路径为:=13cm.故答案为13cm.【点睛】本题考查了四边形中点到点的距离问题,掌握勾股定理是解题的关键.17、9【详解】∵四边形ABCD是矩形,∴∠ABC=90°,BD=AC,BO=OD,∵AB=6cm,BC=8cm,∴由勾股定理得:(cm),∴DO=5cm,∵点E.
F分别是AO、AD的中点,(cm),,,△AEF的周长=故答案为9.18、【分析】根据不等式的性质即可得.【详解】两边同减去n得,,即故答案为:.【点睛】本题考查了不等式的性质:两边同减去一个数,不改变不等号的方向,熟记性质是解题关键.三、解答题(共66分)19、n2﹣2mn﹣1.【分析】根据平方差公式,多项式乘多项式,单项式乘多项式的运算法则进行展开运算即可.【详解】解:原式=(m+n)2﹣1﹣m2﹣1mn,=m2+2mn+n2﹣1﹣m2﹣1mn,=n2﹣2mn﹣1.【点睛】本题考查了整式的混合运算,解题关键是掌握平方差公式,多项式乘多项式,单项式乘多项式的运算法则.20、(1)-6a3b+4a2b2+8ab3;(2)-2x2+11xy.【解析】试题分析:(1)根据单项式乘多项式法则计算即可;(2)先用单项式乘多项式法则计算,然后合并同类项即可.试题解析:解:(1)原式=-6a3b+4a2b2+8ab3;(2)原式=6x2-9xy-8x2+20xy=-2x2+11xy.21、(1);(2),【分析】(1)先根据积的乘方、幂的乘方和同底数幂乘法法则进行计算,再根据多项式除单项式的运算法则计算即可;
(2)根据完全平方公式、多项式乘多项式的运算法则去括号,再合并同类项化成最简式,然后将x、y的值代入化简后的式子即可解答本题.【详解】(1);(2),当,时,原式.【点睛】本题考查整式的混合运算-化简求值,熟练掌握运算法则是解本题的关键.22、(1)A(3,3),B(6,0);(2)当时,;(3)满足条件的P的坐标为(2,0)或【分析】(1)解方程组得到OB,OC的长度,得到B点坐标,再根据△OAB是等腰直角三角形,解出点A的坐标;(2)①根据坐标系中两点之间的距离,QR的长度为点Q与点R纵坐标之差,根据OC的函数解析式,表达出点R坐标,根据△OPQ是等腰直角三角形得出点Q坐标,表达m即可;②根据直线l的运动时间分类讨论,分别求出直线AB,直线BC的解析式,再由QR的长度为点Q与点R纵坐标之差表达出m的函数解析式,当时,列出方程求解.【详解】解:(1)如图所示,过点A作AM⊥OB,交OB于点M,解二元一次方程组,得:,∵,∴OB=6,OC=5∴点B的坐标为(6,0)∵∠OAB=90°,OA=AB,∴△OAB是等腰直角三角形,∠AOM=45°,根据等腰三角形三线合一的性质可得,∵∠AOM=45°,则∠OAM=90°-45°=45°=∠AOM,∴AM=OM=3,所以点A的坐标为(3,3)∴A(3,3),B(6,0)(2)①由(1)可知,∠AOM=45°,又PQ⊥OP,∴△OPQ是等腰直角三角形,∴PQ=OP=t,∴点Q(t,t)如下图,过点C作CD⊥OB于点D,∵时,直线恰好过点,∴OD=4,OC=5在Rt△OCD中,CD=∴点C(4,-3)设直线OC解析式为y=kx,将点C代入得-3=4k,∴,∴,∴点R(t,)∴故当时,②设AB解析式为将A(3,3)与点B(6,0)代入得,解得所以直线AB的解析式为,同理可得直线BC的解析式为当时,若,则,解得t=2,∴P(2,0)当时,,若,即,解得t=10(不符合,舍去)当时,Q(t,-t+6),R(t,)∴若,即,解得,此时,综上所述,满足条件的P的坐标为(2,0)或.【点睛】本题考查了一次函数与几何的综合问题,解题的关键是综合运用函数与几何的知识进行求解.23、(1)详见解析;(2).【分析】(1)根据平行线的性质可得,然后根据AAS即可证得结论;(2)由已知条件、直角三角形的性质和平行线的性质可依次得出∠BAE=30°,∠ABE=60°,∠ADB=30°,然后利用30°角的直角三角形的性质可得BE与AB,AE与AD的关系,进而可得△ABE的面积=四边形ABCD的面积,即得△CDF的面积与四边形ABCD的面积的关系;作EG⊥BC于G,由直角三角形的性质得出EG与AB的关系,进而可得△BCE的面积=四边形ABCD的面积,同理可得△ADF的面积与四边形ABCD的面积的关系,问题即得解决.【详解】(1)证明:,,,,,≌(AAS),;(2)△ABE的面积=△CDF的面积=△BCE的面积=△ADF的面积=四边形ABCD面积的.理由如下:∵AD=BC,,DB=BD,∴△ADB≌△CBD,∴四边形ABCD的面积=2×△ABD的面积=AB×AD,∵,∴∠BAE=30°,∴∠ABE=60°,∠ADB=30°,∴BE=AB,AE=AD,∴△ABE的面积=BE×AE=×AB×AD=AB×AD=四边形ABCD的面积;∵△ABE≌△CDF,∴△CDF的面积═四边形ABCD的面积;作EG⊥BC于G,如图所示:∵∠CBD=∠ADB=30°,∴EG=BE=×AB=AB,∴△BCE的面积=BC×EG=BC×AB=BC×AB=四边形ABCD的面积,同理:△ADF的面积=矩形ABCD的面积.【点睛】本题考查了全等三角形的判定与性质、含30°角的直角三角形的性质、平行线的性质、三角形面积公式等知识;熟练掌握30°角的直角三角形的性质和全等三角形的判定与性质是解题的关键.24、30天【分析】设这项工程的规定时间是x天,则甲队单独施工需要x天完工,乙队单独施工需要1.5x天完工,根据甲队完成的工作量+乙队完成的工作量=总工作量(单位1),即可得出关于x的分式方程,解之经检验后即可得出结论.【详解】解:设这项工程的规定时间是x天,则甲队单独施工需要x天完工,乙队单独施工需要1.5x天完工,
依题意,得:,解得:x=30,
经检验,x=30是原方程的解,且符合题意.
答:这项工程的规定时间是30天.【点睛】本题考查了由实际问题抽象出分式方程,找准等量关系,正确列出分式方程是解题的关键.25、(1);(2);(3)或或5或【分析】(1)设AP=x,利用勾股定理的方程思想求x,再去求AP长,除以速度得时间t;(2)根据角平分线的性质,设CP=x,继续利用勾股定理法方程思想求x,再算出P的路径长,除以速度得时间t;(3)利用
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 观念改变培训课件
- 主播直播方案
- 裱花干货知识培训课件
- 课件问题教学课件
- 质量安全管理培训与教育课件
- 呼吸内科慢性阻塞性肺疾病急性加重期护理方案
- 中国含磷萃取剂项目创业计划书
- 感染科感染性腹泻护理要点培训指南
- 小学综合实践课程乡土资源的开发与利用
- 二级精神病医院验收汇报
- 公路养护管理计划与执行报告
- 2025年银行招聘各银行笔试真题(附答案)
- (初级)小红书种草营销师认证考试真题试题(附答案)
- 学生入队必须掌握的“六知六会一做”
- 预包装食品安全管理制度
- 2025年中级制图员《理论知识》考试真题(含新版解析)
- 小学教师网络信息安全管理规范
- 腹痛科普课件
- 惊恐障碍课件
- 视频监控巡查管理办法
- 银行招聘考试题目及答案
评论
0/150
提交评论