版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
微考点6-2圆锥曲线中的弦长面积类问题(三大题型)直线与圆锥曲线相交,弦和某个定点所构成的三角形的面积,处理方法:①一般方法:(其中为弦长,为顶点到直线AB的距离),设直线为斜截式.进一步,=②特殊方法:拆分法,可以将三角形沿着轴或者轴拆分成两个三角形,不过在拆分的时候给定的顶点一般在轴或者轴上,此时,便于找到两个三角形的底边长.③坐标法:设,则④面积比的转化:三角形的面积比及其转化有一定的技巧性,一般的思路就是将面积比转化为可以利用设线法完成的线段之比或者设点法解决的坐标形式,通常有以下类型:1.两个三角形同底,则面积之比转化为高之比,进一步转化为点到直线距离之比2.两个三角形等高,则面积之比转化为底之比,进一步转化为长度(弦长之比)3.利用三角形面积计算的正弦形式,若等角转化为腰长之比4.面积的割补和转化⑤四边形的面积计算在高考中,四边形一般都比较特殊,常见的情况是四边形的两对角线相互垂直,此时我们借助棱形面积公式,四边形面积等于两对角线长度乘积的一半;当然也有一些其他的情况,此时可以拆分成两个三角形,借助三角形面积公式求解.⑥注意某条边过定点的三角形和四边形当三角形或者四边形某条边过定点时,我们就可以把三角形,四边形某个定顶点和该定点为边,这样就转化成定底边的情形,最终可以简化运算.当然,你需要把握住一些常见的定点结论,才能察觉出问题的关键.题型一:利用弦长公式距离公式解决弦长问题【精选例题】【例1】已知椭圆,,分别为左右焦点,点,在椭圆E上.(1)求椭圆E的离心率;(2)过左焦点且不垂直于坐标轴的直线l交椭圆E于A,B两点,若的中点为M,O为原点,直线交直线于点N,求取最大值时直线l的方程.【例2】已知圆:和圆:,以动点为圆心的圆与其中一个圆外切,与另一个圆内切,记动点的轨迹为.(1)求轨迹的方程;(2)若斜率为的直线交轨迹于,两点,求的长度的最大值.【跟踪训练】1.已知椭圆C:,圆O:,若圆O过椭圆C的左顶点及右焦点.(1)求椭圆C的方程;(2)过点作两条相互垂直的直线,,分别与椭圆相交于点A,B,D,E,试求的取值范围.2.已知椭圆:的两焦点,,且椭圆过.(1)求椭圆的标准方程;(2)过点作不与坐标轴垂直的直线交椭圆于,两点,线段的垂直平分线与轴负半轴交于点,若点的纵坐标的最大值为,求的取值范围.题型二:利用弦长公式距离公式解决三角形面积类问题【精选例题】【例1】已知椭圆的方程为,称圆心在坐标原点,半径为的圆为椭圆的“蒙日圆”,椭圆的焦距为,离心率为.(1)求椭圆的方程;(2)若直线与椭圆交于、两点,与其“蒙日圆”交于、两点,当时,求面积的最大值.【例2】已知椭圆的左、右焦点分别是,,上顶点为A,椭圆的焦距等于椭圆的长半轴长,且的面积为.(1)求椭圆的标准方程;(2)若B,C是椭圆上不同的两点,且直线AB和直线AC的斜率之积为,求面积的最大值.【例3】动点满足方程.(1)求动点P的轨迹的方程;(2)设过原点的直线l与轨迹相交于两点,设,连接并分别延长交轨迹于点,记的面积分别是,求的取值范围.【例4】已知椭圆C的中心在原点,一个焦点为,且长轴长是短轴长的倍.(1)求椭圆C的标准方程;(2)设过焦点F的直线l与椭圆C交于A、B两点,是椭圆的另一个焦点,若内切圆的半径,求直线l的方程.【跟踪训练】1.如图,已知椭圆的焦点为,,离心率为,椭圆的上、下顶点分别为,右顶点为,直线过点且垂直于轴,点在椭圆上(且在第一象限),直线与交于点,直线与轴交于点.(1)求椭圆的标准方程;(2)判定(为坐标原点)与的面积之和是否为定值?若是,请求出该定值;若不是,请说明理由.2.已知椭圆C的方程为,其离心率为,,为椭圆的左右焦点,过作一条不平行于坐标轴的直线交椭圆于A,B两点,的周长为.
(1)求椭圆C的方程;(2)过B作x轴的垂线交椭圆于点D.①试讨论直线AD是否恒过定点,若是,求出定点坐标;若不是,请说明理由.②求面积的最大值.3.已知抛物线的顶点为坐标原点,焦点为.椭圆的中心为,左焦点为,上顶点为,右顶点为,且.(1)求抛物线和椭圆的标准方程.(2)设直线经过点,与抛物线交于,两点,与椭圆交于,两点.记和的面积分别为和,是否存在直线,使得?若存在,求出的方程;若不存在,请说明理由.题型三:利用弦长公式距离公式解决定四边形面积问题【精选例题】【例1】如图所示,椭圆的上顶点和右顶点分别是和,离心率,,是椭圆上的两个动点,且.(1)求椭圆的标准方程;(2)求四边形面积的最大值;(3)试判断直线与的斜率之积是否为定值,若是,求出定值;若不是,请说明理由.【例2】已知,分别为椭圆Γ:的左、右焦点,过点的直线与椭圆Γ交于A,B两点,且的周长为.(1)求椭圆Γ的标准方程;(2)若过点的直线与椭圆Γ交于C,D两点,且,求四边形ACBD面积的取值范围.【跟踪训练】1.已知椭圆:,椭圆:,动点在上运动,过作的两条切线,切点分别为A,B.(提示:过椭圆C:上一点与C相切的直线方程为)(1)求直线AB的方程(用,表示);(2)O为坐标原点,求四边形OAPB的面积.2.已知焦距为2的椭圆:,,分别为其左右焦点,过点的直线与椭圆交于,两点,的周长为8.(1)求椭圆的方程;(2)若过点的直线与椭圆交于,两点且满足,求四边形面积的最小值.1.设椭圆的左右顶点分别为,左右焦点.已知,.(1)求椭圆方程.(2)若斜率为1的直线交椭圆于A,B两点,与以为直径的圆交于C,D两点.若,求直线的方程.2.已知圆O:,点M是圆O上任意一点,M在x轴上的射影为N,点P满足,记点P的轨迹为E.(1)求曲线E的方程;(2)已知,过F的直线m与曲线E交于A,B两点,过F且与m垂直的直线n与圆O交于C,D两点,求的取值范围.3.已知椭圆的两个焦点与短轴的一个端点是直角三角形的三个顶点,且椭圆过,斜率为的直线与椭圆交于、.(1)求椭圆的标准方程;(2)若线段的垂直平分线交轴于点,记的中点为坐标为且,求直线的方程,并写出的坐标.4.已知椭圆的左、右焦点分别为,离心率为,点在椭圆上.(1)求椭圆的标准方程;(2)过点的直线与椭圆相交于,两点,记的面积为,求的最大值.5.已知椭圆C:的离心率为,椭圆上一动点P与左、右焦点构成的三角形面积的最大值为.(1)求椭圆C的方程;(2)设椭圆C的左、右顶点分别为A,B,直线PQ交椭圆C于P,Q两点,记直线AP的斜率为,直线BQ的斜率为,已知,设和的面积分别为,,求的最大值.6.已知椭圆的离心率为,左、右焦点分别为,直线与椭圆交于两点,且的周长最大值为8.(1)求椭圆的标准方程;(2)已知点是椭圆上一动点(不与端点重合),分别为椭圆的左右顶点,直线交轴于点,若与的面积相等,求直线的方程.7.在平面直角坐标系中,、为圆:与轴的交点,点为该平面内异于、两点的动点,且______,从下列条件中任选一个补充在上面问题中作答.条件①:直线与直线的斜率之积为;条件②:设为圆上的动点,为点在轴上的射影,且为的中点;注:如果选择多个条件作答,按第一个计分.(1)求动点的轨迹方程;(2)若直线与(1)问中轨迹方程交于、两点,与圆相交于、两点,且,求面积最大值.8.设椭圆的左、右焦点分别为,,上、下顶点分别为,,短轴长为,过且垂直于长轴的直线与椭圆相交所得的弦长为3.(1)求椭圆的标准方程;(2)过点的直线与椭圆交于不同的两点,,若,试求内切圆的面积.9.已知直线与椭圆有且只有一个公共点.(1)求椭圆的方程;(2)是否存在实数,使椭圆上存在不同两点、关于直线对称?若存在,求的取值范围;若不存在,请说明理由;(3)椭圆的内接四边形的对角线与垂直相交于椭圆的左焦点,是四边形的面积,求的最小值.10.已知点与定点的距离和它到定直线的距离的比是.(1)求点的轨迹的标准方程;(2)设点,若点是曲线上两点,且在轴上方,满足,求四边形面积的最大值.11.已知椭圆与椭圆有相同的离心率,椭圆焦点在y轴上且经过点.(
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年深圳会计电算化理论考试试题及答案
- 【2025年】上中学综合素质真题及答案
- (2025年)招聘新任教师教育综合知识+科学自测试题及答案解析
- 解析卷人教版八年级物理上册第5章透镜及其应用-透镜专项训练试题(含答案解析版)
- 综合解析人教版八年级上册物理声现象《声音的特性》达标测试试卷(详解版)
- 考点攻克人教版八年级上册物理光现象《光的直线传播》专项测试试题(含答案解析)
- 考点解析-人教版八年级物理上册第4章光现象-光的折射专题测试试卷(解析版)
- 四川中烟工业有限责任公司考试真题2025
- 海南省公共卫生临床中心招聘事业编工作人员考试真题2024
- 2022年人教版五年级上册数学第三单元小数除法单元测试卷含答案
- 塞尔达玩家测试题及答案
- 2025-2030中国单反数码相机市场现状深度剖析及需求预测研究报告
- 施工质量检查制度
- 2025年粮油集团笔试试题及答案
- 个人成长目标设定与实现路径
- 化学发展史课件
- 尿路感染的护理常规
- 应急计划评审表
- 配电房岗位职责
- 2024-2025华为ICT大赛(实践赛)-网络赛道理论考试题库大全-上(单选题)
- 应急第一响应人理论考试试卷(含答案)
评论
0/150
提交评论