




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
一、解答题1.如图,在平面直角坐标系中,点,,将线段AB进行平移,使点A刚好落在x轴的负半轴上,点B刚好落在y轴的负半轴上,A,B的对应点分别为,,连接交y轴于点C,交x轴于点D.(1)线段可以由线段AB经过怎样的平移得到?并写出,的坐标;(2)求四边形的面积;(3)P为y轴上的一动点(不与点C重合),请探究与的数量关系,给出结论并说明理由.2.已知AB∥CD,线段EF分别与AB,CD相交于点E,F.(1)请在横线上填上合适的内容,完成下面的解答:如图1,当点P在线段EF上时,已知∠A=35°,∠C=62°,求∠APC的度数;解:过点P作直线PH∥AB,所以∠A=∠APH,依据是;因为AB∥CD,PH∥AB,所以PH∥CD,依据是;所以∠C=(),所以∠APC=()+()=∠A+∠C=97°.(2)当点P,Q在线段EF上移动时(不包括E,F两点):①如图2,∠APQ+∠PQC=∠A+∠C+180°成立吗?请说明理由;②如图3,∠APM=2∠MPQ,∠CQM=2∠MQP,∠M+∠MPQ+∠PQM=180°,请直接写出∠M,∠A与∠C的数量关系.3.已知直线,点P为直线、所确定的平面内的一点.(1)如图1,直接写出、、之间的数量关系;(2)如图2,写出、、之间的数量关系,并证明;(3)如图3,点E在射线上,过点E作,作,点G在直线上,作的平分线交于点H,若,,求的度数.4.点A,C,E在直线l上,点B不在直线l上,把线段AB沿直线l向右平移得到线段CD.(1)如图1,若点E在线段AC上,求证:B+D=BED;(2)若点E不在线段AC上,试猜想并证明B,D,BED之间的等量关系;(3)在(1)的条件下,如图2所示,过点B作PB//ED,在直线BP,ED之间有点M,使得ABE=EBM,CDE=EDM,同时点F使得ABE=nEBF,CDE=nEDF,其中n≥1,设BMD=m,利用(1)中的结论求BFD的度数(用含m,n的代数式表示).5.如图,∠EBF=50°,点C是∠EBF的边BF上一点.动点A从点B出发在∠EBF的边BE上,沿BE方向运动,在动点A运动的过程中,始终有过点A的射线AD∥BC.(1)在动点A运动的过程中,(填“是”或“否”)存在某一时刻,使得AD平分∠EAC?(2)假设存在AD平分∠EAC,在此情形下,你能猜想∠B和∠ACB之间有何数量关系?并请说明理由;(3)当AC⊥BC时,直接写出∠BAC的度数和此时AD与AC之间的位置关系.6.如图,直线HDGE,点A在直线HD上,点C在直线GE上,点B在直线HD、GE之间,∠DAB=120°.(1)如图1,若∠BCG=40°,求∠ABC的度数;(2)如图2,AF平分∠HAB,BC平分∠FCG,∠BCG=20°,比较∠B,∠F的大小;(3)如图3,点P是线段AB上一点,PN平分∠APC,CN平分∠PCE,探究∠HAP和∠N的数量关系,并说明理由.7.数学中有很多的可逆的推理.如果,那么利用可逆推理,已知n可求b的运算,记为,如,则,则.①根据定义,填空:_________,__________.②若有如下运算性质:.根据运算性质填空,填空:若,则__________;___________;③下表中与数x对应的有且只有两个是错误的,请直接找出错误并改正.x1.5356891227错误的式子是__________,_____________;分别改为__________,_____________.8.阅读下面的文字,解答问题.对于实数a,我们规定:用符号[a]表示不大于a的最大整数;用{a}表示a减去[a]所得的差.例如:[]=1,[2.2]=2,{}=﹣1,{2.2}=2.2﹣2=0.2.(1)仿照以上方法计算:[]={5﹣}=;(2)若[]=1,写出所有满足题意的整数x的值:.(3)已知y0是一个不大于280的非负数,且满足{}=0.我们规定:y1=[],y2=[],y3=[],…,以此类推,直到yn第一次等于1时停止计算.当y0是符合条件的所有数中的最大数时,此时y0=,n=.9.阅读材料,解答问题:如果一个四位自然数,十位数字是千位数字的2倍与百位数字的差,个位数字是千位数字的2倍与百位数字的和,则我们称这个四位数“依赖数”,例如,自然数2135,其中3=2×2﹣1,5=2×2+1,所以2135是“依赖数”.(1)请直接写出最小的四位依赖数;(2)若四位依赖数的后三位表示的数减去百位数字的3倍得到的结果除以7余3,这样的数叫做“特色数”,求所有特色数.(3)已知一个大于1的正整数m可以分解成m=pq+n4的形式(p≤q,n≤b,p,q,n均为正整数),在m的所有表示结果中,当nq﹣np取得最小时,称“m=pq+n4”是m的“最小分解”,此时规定:F(m)=,例:20=1×4+24=2×2+24=1×19+14,因为1×19﹣1×1>2×4﹣2×1>2×2﹣2×2,所以F(20)==1,求所有“特色数”的F(m)的最大值.10.阅读材料,回答问题:(1)对于任意实数x,符号表示“不超过x的最大整数”,在数轴上,当x是整数,就是x,当x不是整数时,是点x左侧的第一个整数点,如,,,,则________,________.(2)2015年11月24日,杭州地铁1号线下沙延伸段开通运营,极大的方便了下沙江滨居住区居民的出行,杭州地铁收费采用里程分段计价,起步价为2元/人次,最高价为8元/人次,不足1元按1元计算,具体权费标准如下:里程范围4公里以内(含4公里)4-12公里以内(含12公里)12-24公里以内(含24公里)24公里以上收费标准2元4公里/元6公里/元8公里/元①若从下沙江滨站到文海南路站的里程是3.07公里,车费________元,下沙江滨站到金沙湖站里程是7.93公里,车费________元,下沙江滨站到杭州火东站里程是19.17公里,车费________元;②若某人乘地铁花了7元,则他乘地铁行驶的路程范围(不考虑实际站点下车里程情况)?11.先阅读下面的材料,再解答后面的各题:现代社会会保密要求越来越高,密码正在成为人们生活的一部分,有一种密码的明文(真实文)按计算机键盘字母排列分解,其中这26个字母依次对应这26个自然数(见下表).QWERTYUIOPASD12345678910111213FGHJKLZXCVBNM14151617181920212223242526给出一个变换公式:将明文转成密文,如,即变为:,即A变为S.将密文转成成明文,如,即变为:,即D变为F.(1)按上述方法将明文译为密文.(2)若按上方法将明文译成的密文为,请找出它的明文.12.规定:求若干个相同的有理数(均不等于0)的除法运算叫做除方,如2÷2÷2,(-3)÷(-3)÷(-3)÷(-3)等.类比有理数的乘方,我们把2÷2÷2记作2③,读作“2的圈3次方”,(-3)÷(-3)÷(-3)÷(-3)记作(-3)④,读作“-3的圈4次方”,一般地,把(a≠0)记作aⓝ,读作“a的圈
n次方”.(初步探究)(1)直接写出计算结果:2③=___,()⑤=___;(2)关于除方,下列说法错误的是___A.任何非零数的圈2次方都等于1;
B.对于任何正整数n,1ⓝ=1;C.3④=4③;
D.负数的圈奇数次方结果是负数,负数的圈偶数次方结果是正数.(深入思考)我们知道,有理数的减法运算可以转化为加法运算,除法运算可以转化为乘法运算,有理数的除方运算如何转化为乘方运算呢?(1)试一试:仿照上面的算式,将下列运算结果直接写成幂的形式.(-3)④=___;
5⑥=___;(-)⑩=___.(2)想一想:将一个非零有理数a的圈n次方写成幂的形式等于___;(3)算一算:÷(−)④×(−2)⑤−(−)⑥÷13.如图,已知点,点,且,满足关系式.(1)求点、的坐标;(2)如图1,点是线段上的动点,轴于点,轴于点,轴于点,连接、.试探究,之间的数量关系;(3)如图2,线段以每秒2个单位长度的速度向左水平移动到线段.若线段交轴于点,当三角形和三角形的面积相等时,求移动时间和点的坐标.14.如图1,已知直线CD∥EF,点A,B分别在直线CD与EF上.P为两平行线间一点.(1)若∠DAP=40°,∠FBP=70°,则∠APB=(2)猜想∠DAP,∠FBP,∠APB之间有什么关系?并说明理由;(3)利用(2)的结论解答:①如图2,AP1,BP1分别平分∠DAP,∠FBP,请你写出∠P与∠P1的数量关系,并说明理由;②如图3,AP2,BP2分别平分∠CAP,∠EBP,若∠APB=β,求∠AP2B.(用含β的代数式表示)15.如图1,点是第二象限内一点,轴于,且是轴正半轴上一点,是x轴负半轴上一点,且.(1)(),()(2)如图2,设为线段上一动点,当时,的角平分线与的角平分线的反向延长线交于点,求的度数:(注:三角形三个内角的和为)(3)如图3,当点在线段上运动时,作交于的平分线交于,当点在运动的过程中,的大小是否变化?若不变,求出其值;若变化,请说明理由.16.在平面直角坐标系xOy中.点A,B,P不在同一条直线上.对于点P和线段AB给出如下定义:过点P向线段AB所在直线作垂线,若垂足Q落在线段AB上,则称点P为线段AB的内垂点.若垂足Q满足|AQ-BQ|最小,则称点P为线段AB的最佳内垂点.已知点A(﹣2,1),B(1,1),C(﹣4,3).(1)在点P1(2,3)、P2(﹣5,0)、P3(﹣1,﹣2),P4(﹣,4)中,线段AB的内垂点为;(2)点M是线段AB的最佳内垂点且到线段AB的距离是2,则点M的坐标为;(3)点N在y轴上且为线段AC的内垂点,则点N的纵坐标n的取值范围是;(4)已知点D(m,0),E(m+4,0),F(2m,3).若线段CF上存在线段DE的最佳内垂点,求m的取值范围.17.在平面直角坐标系中,,满足.(1)直接写出、的值:;;(2)如图1,若点满足的面积等于6,求的值;(3)设线段交轴于C,动点E从点C出发,在轴上以每秒1个单位长度的速度向下运动,动点F从点出发,在轴上以每秒2个单位长度的速度向右运动,若它们同时出发,运动时间为秒,问为何值时,有?请求出的值.18.在平面直角坐标系中,点A(1,2),点B(a,b),且,点E(6,0),将线段AB向下平移m个单位(m>0)得到线段CD,其中A、B的对应点分别为C、D.(1)求点的坐标及三角形ABE的面积;(2)当线段CD与轴有公共点时,求的取值范围;(3)设三角形CDE的面积为,当时,求的取值范围.19.某企业用规格是170cm×40cm的标准板材作为原材料,按照图①所示的裁法一或裁法二,裁剪出甲型与乙型两种板材(单位:cm).(1)求图中a、b的值;(2)若将40张标准板材按裁法一裁剪,5张标准板材按裁法二裁剪,裁剪后将得到的甲型与乙型板材做侧面或底面,做成如图②所示的竖式与横式两种无盖的装饰盒若干个(接缝处的长度忽略不计).①一共可裁剪出甲型板材张,乙型板材张;②恰好一共可以做出竖式和横式两种无盖装饰盒子多少个?20.阅读下列材料,解答下面的问题:我们知道方程有无数个解,但在实际生活中我们往往只需求出其正整数解.例:由,得:,(x、y为正整数)∴,则有.又为正整数,则为正整数.由2与3互质,可知:x为3的倍数,从而x=3,代入∴2x+3y=12的正整数解为问题:(1)请你写出方程的一组正整数解:.(2)若为自然数,则满足条件的x值为.(3)七年级某班为了奖励学习进步的学生,购买了单价为3元的笔记本与单价为5元的钢笔两种奖品,共花费35元,问有几种购买方案?21.某校规划在一块长AD为18m、宽AB为13m的长方形场地ABCD上,设计分别与AD,AB平行的横向通道和纵向通道,其余部分铺上草皮,如图所示,若设计三条通道,一条横向,两条纵向,且它们的宽度相等,其余六块草坪相同,其中一块草坪两边之比AM∶AN=8∶9,问通道的宽是多少?22.平面直角坐标系中,A(a,0),B(0,b),a,b满足,将线段AB平移得到CD,A,B的对应点分别为C,D,其中点C在y轴负半轴上.(1)求A,B两点的坐标;(2)如图1,连AD交BC于点E,若点E在y轴正半轴上,求的值;(3)如图2,点F,G分别在CD,BD的延长线上,连结FG,∠BAC的角平分线与∠DFG的角平分线交于点H,求∠G与∠H之间的数量关系.23.一个四位正整数,若其千位上与百位上的数字之和等于十位上与个位上的数字之和,都等于k,那么称这个四位正整数为“k类诚勤数”,例如:2534,因为,所以2534是“7类诚勤数”.(1)请判断7441和5436是否为“诚勤数”并说明理由;(2)若一个四位正整数A为“5类诚勤数”且能被13整除,请求出的所有可能取值.24.如图,在平面直角坐标系中,点为坐标原点,点的坐标为,点的坐标为,其中是二元一次方程组的解,过点作轴的平行线交轴于点.(1)求点的坐标;(2)动点从点出发,以每秒个单位长度的速度沿射线的方向运动,连接,设点的运动时间为秒,三角形的面积为,请用含的式子表示(不用写出相应的的取值范围);(3)在(2)的条件下,在动点从点出发的同时,动点从点出发以每秒个单位长度的速度沿线段的方向运动.过点作直线的垂线,点为垂足;过点作直线的垂线,点为垂足.当时,求的值.25.某校为了丰富同学们的课外活动,决定给全校20个班每班配4副乒乓球拍和若干乒乓球,两家体育用品商店对同一款乒乓球拍和乒乓球推出让利活动,甲商店买一副乒乓球拍送10个乒乓球,乙商店所有商品均打九折(按标价的90%)销售,已知2副乒乓球拍和10个乒乓球110元,3副乒乓球拍和20个乒乓球170元。请解答下列问题:(1)求每副乒乓球拍和每个乒乓球的单价为多少元.(2)若每班配4副乒乓球拍和40个乒乓球,则甲商店的费用为元,乙商店的费用为元.(3)每班配4副乒乓球拍和m(m>100)个乒乓球则甲商店的费用为元,乙商店的费用为元.(4)若该校只在一家商店购买,你认为在哪家超市购买更划算?26.定义一种新运算“a※b”:当a≥b时,a※b=2a+b;当a<b时,a※b=2a﹣b.例如:3※(﹣4)=2×3+(﹣4)=2,(﹣6)※12=2×(﹣6)﹣12=﹣24.(1)填空:(﹣2)※3=;(2)若(3x﹣4)※(2x+3)=2(3x﹣4)+(2x+3),则x的取值范围为;(3)已知(2x﹣6)※(9﹣3x)<7,求x的取值范围;(4)小明在计算(2x2﹣2x+4)※(x2+4x﹣6)时随意取了一个x的值进行计算,得出结果是0,小丽判断小明计算错了,小丽是如何判断的?请说明理由.27.对于实数x,若,则符合条件的中最大的正数为的内数,例如:8的内数是5;7的内数是4.(1)1的内数是______,20的内数是______,6的内数是______;(2)若3是x的内数,求x的取值范围;(3)一动点从原点出发,以3个单位/秒的速度按如图1所示的方向前进,经过秒后,动点经过的格点(横,纵坐标均为整数的点)中能围成的最大实心正方形的格点数(包括正方形边界与内部的格点)为,例如当时,,如图2①……;当时,,如图2②,③;……①用表示的内数;②当的内数为9时,符合条件的最大实心正方形有多少个,在这些实心正方形的格点中,直接写出离原点最远的格点的坐标.(若有多点并列最远,全部写出)28.阅读材料:如果x是一个有理数,我们把不超过x的最大整数记作[x].例如,[3.2]=3,[5]=5,[-2.1]=-3.那么,x=[x]+a,其中0≤a<1.例如,3.2=[3.2]+0.2,5=[5]+0,-2.1=[-2.1]+0.9.请你解决下列问题:(1)[4.8]=,[-6.5]=;(2)如果[x]=3,那么x的取值范围是;(3)如果[5x-2]=3x+1,那么x的值是;(4)如果x=[x]+a,其中0≤a<1,且4a=[x]+1,求x的值.29.材料1:我们把形如(、、为常数)的方程叫二元一次方程.若、、为整数,则称二元一次方程为整系数方程.若是,的最大公约数的整倍数,则方程有整数解.例如方程都有整数解;反过来也成立.方程都没有整数解,因为6,3的最大公约数是3,而10不是3的整倍数;4,2的最大公约数是2,而1不是2的整倍数.材料2:求方程的正整数解.解:由已知得:……①设(为整数),则……②把②代入①得:.所以方程组的解为,根据题意得:.解不等式组得0<<.所以的整数解是1,2,3.所以方程的正整数解是:,,.根据以上材料回答下列问题:(1)下列方程中:①,②,③,④,⑤,⑥.没有整数解的方程是(填方程前面的编号);(2)仿照上面的方法,求方程的正整数解;(3)若要把一根长30的钢丝截成2长和3长两种规格的钢丝(两种规格都要有),问怎样截才不浪费材料?你有几种不同的截法?(直接写出截法,不要求解题过程)30.在平面直角坐标系中,点A,B的坐标分别为(﹣1,0),(3,0),现同时将点A,B分别向上平移2个单位,再向右平移1个单位,分别得到点A,B的对应点C,D,连接AC,BD.(1)求点C,D的坐标及四边形ABDC的面积S四边形ABDC;(2)在y轴上是否存在一点P,连接PA,PB,使S△PAB=S四边形ABDC?若存在这样一点,求出点P的坐标;若不存在,试说明理由;(3)点P是直线BD上一个动点,连接PC、PO,当点P在直线BD上运动时,请直接写出∠OPC与∠PCD、∠POB的数量关系【参考答案】***试卷处理标记,请不要删除一、解答题1.(1)向左平移4个单位,再向下平移6个单位,,;(2)24;(3)见解析【分析】(1)利用平移变换的性质解决问题即可.(2)利用分割法确定四边形的面积即可.(3)分两种情形:点在点的上方,点在点的下方,分别求解即可.【详解】解:(1)点,,又将线段进行平移,使点刚好落在轴的负半轴上,点刚好落在轴的负半轴上,线段是由线段向左平移4个单位,再向下平移6个单位得到,,.(2).(3)连接.,,的中点坐标为在轴上,.,轴,同法可证,,,,同法可证,,,,当点在点的下方时,,,,,当点在点的上方时,.【点睛】本题考查坐标与图形变化—平移,解题的关键是理解题意,学会有分割法求四边形的面积,学会用分类讨论的思想解决问题,属于中考常考题型.2.(1)两直线平行,内错角相等;平行于同一条直线的两条直线平行;∠CPH;∠APH,∠CPH;(2)①∠APQ+∠PQC=∠A+∠C+180°成立,理由见解答过程;②3∠PMQ+∠A+∠C=360°.【分析】(1)根据平行线的判定与性质即可完成填空;(2)结合(1)的辅助线方法即可完成证明;(3)结合(1)(2)的方法,根据∠APM=2∠MPQ,∠CQM=2∠MQP,∠PMQ+∠MPQ+∠PQM=180°,即可证明∠PMQ,∠A与∠C的数量关系.【详解】解:过点P作直线PH∥AB,所以∠A=∠APH,依据是两直线平行,内错角相等;因为AB∥CD,PH∥AB,所以PH∥CD,依据是平行于同一条直线的两条直线平行;所以∠C=(∠CPH),所以∠APC=(∠APH)+(∠CPH)=∠A+∠C=97°.故答案为:两直线平行,内错角相等;平行于同一条直线的两条直线平行;∠CPH;∠APH,∠CPH;(2)①如图2,∠APQ+∠PQC=∠A+∠C+180°成立,理由如下:过点P作直线PH∥AB,QG∥AB,∵AB∥CD,∴AB∥CD∥PH∥QG,∴∠A=∠APH,∠C=∠CQG,∠HPQ+∠GQP=180°,∴∠APQ+∠PQC=∠APH+∠HPQ+∠GQP+∠CQG=∠A+∠C+180°.∴∠APQ+∠PQC=∠A+∠C+180°成立;②如图3,过点P作直线PH∥AB,QG∥AB,MN∥AB,∵AB∥CD,∴AB∥CD∥PH∥QG∥MN,∴∠A=∠APH,∠C=∠CQG,∠HPQ+∠GQP=180°,∠HPM=∠PMN,∠GQM=∠QMN,∴∠PMQ=∠HPM+∠GQM,∵∠APM=2∠MPQ,∠CQM=2∠MQP,∠PMQ+∠MPQ+∠PQM=180°,∴∠APM+∠CQM=∠A+∠C+∠PMQ=2∠MPQ+2∠MQP=2(180°﹣∠PMQ),∴3∠PMQ+∠A+∠C=360°.【点睛】考核知识点:平行线的判定和性质.熟练运用平行线性质和判定,添加适当辅助线是关键.3.(1)∠A+∠C+∠APC=360°;(2)见解析;(3)55°【分析】(1)首先过点P作PQ∥AB,则易得AB∥PQ∥CD,然后由两直线平行,同旁内角互补,即可证得∠A+∠C+∠APC=360°;(2)作PQ∥AB,易得AB∥PQ∥CD,根据两直线平行,内错角相等,即可证得∠APC=∠A+∠C;(3)由(2)知,∠APC=∠PAB-∠PCD,先证∠BEF=∠PQB=110°、∠PEG=∠FEG,∠GEH=∠BEG,根据∠PEH=∠PEG-∠GEH可得答案.【详解】解:(1)∠A+∠C+∠APC=360°如图1所示,过点P作PQ∥AB,∴∠A+∠APQ=180°,∵AB∥CD,∴PQ∥CD,∴∠C+∠CPQ=180°,∴∠A+∠APQ+∠C+∠CPQ=360°,即∠A+∠C+∠APC=360°;(2)∠APC=∠A+∠C,如图2,作PQ∥AB,∴∠A=∠APQ,∵AB∥CD,∴PQ∥CD,∴∠C=∠CPQ,∵∠APC=∠APQ-∠CPQ,∴∠APC=∠A-∠C;(3)由(2)知,∠APC=∠PAB-∠PCD,∵∠APC=30°,∠PAB=140°,∴∠PCD=110°,∵AB∥CD,∴∠PQB=∠PCD=110°,∵EF∥BC,∴∠BEF=∠PQB=110°,∵EF∥BC,∴∠BEF=∠PQB=110°,∵∠PEG=∠PEF,∴∠PEG=∠FEG,∵EH平分∠BEG,∴∠GEH=∠BEG,∴∠PEH=∠PEG-∠GEH=∠FEG-∠BEG=∠BEF=55°.【点睛】此题考查了平行线的性质以及角平分线的定义.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想的应用.4.(1)见解析;(2)当点E在CA的延长线上时,∠BED=∠D-∠B;当点E在AC的延长线上时,∠BED=∠BET-∠DET=∠B-∠D;(3)【分析】(1)如图1中,过点E作ET∥AB.利用平行线的性质解决问题.(2)分两种情形:如图2-1中,当点E在CA的延长线上时,如图2-2中,当点E在AC的延长线上时,构造平行线,利用平行线的性质求解即可.(3)利用(1)中结论,可得∠BMD=∠ABM+∠CDM,∠BFD=∠ABF+∠CDF,由此解决问题即可.【详解】解:(1)证明:如图1中,过点E作ET∥AB.由平移可得AB∥CD,∵AB∥ET,AB∥CD,∴ET∥CD∥AB,∴∠B=∠BET,∠TED=∠D,∴∠BED=∠BET+∠DET=∠B+∠D.(2)如图2-1中,当点E在CA的延长线上时,过点E作ET∥AB.∵AB∥ET,AB∥CD,∴ET∥CD∥AB,∴∠B=∠BET,∠TED=∠D,∴∠BED=∠DET-∠BET=∠D-∠B.如图2-2中,当点E在AC的延长线上时,过点E作ET∥AB.∵AB∥ET,AB∥CD,∴ET∥CD∥AB,∴∠B=∠BET,∠TED=∠D,∴∠BED=∠BET-∠DET=∠B-∠D.(3)如图,设∠ABE=∠EBM=x,∠CDE=∠EDM=y,∵AB∥CD,∴∠BMD=∠ABM+∠CDM,∴m=2x+2y,∴x+y=m,∵∠BFD=∠ABF+∠CDF,∠ABE=n∠EBF,∠CDE=n∠EDF,∴∠BFD===.【点睛】本题属于几何变换综合题,考查了平行线的性质,角平分线的定义等知识,解题的关键是学会条件常用辅助线,构造平行线解决问题,属于中考常考题型.5.(1)是;(2)∠B=∠ACB,证明见解析;(3)∠BAC=40°,AC⊥AD.【分析】(1)要使AD平分∠EAC,则要求∠EAD=∠CAD,由平行线的性质可得∠B=∠EAD,∠ACB=∠CAD,则当∠ACB=∠B时,有AD平分∠EAC;(2)根据角平分线可得∠EAD=∠CAD,由平行线的性质可得∠B=∠EAD,∠ACB=∠CAD,则有∠ACB=∠B;(3)由AC⊥BC,有∠ACB=90°,则可求∠BAC=40°,由平行线的性质可得AC⊥AD.【详解】解:(1)是,理由如下:要使AD平分∠EAC,则要求∠EAD=∠CAD,由平行线的性质可得∠B=∠EAD,∠ACB=∠CAD,则当∠ACB=∠B时,有AD平分∠EAC;故答案为:是;(2)∠B=∠ACB,理由如下:∵AD平分∠EAC,∴∠EAD=∠CAD,∵AD∥BC,∴∠B=∠EAD,∠ACB=∠CAD,∴∠B=∠ACB.(3)∵AC⊥BC,∴∠ACB=90°,∵∠EBF=50°,∴∠BAC=40°,∵AD∥BC,∴AD⊥AC.【点睛】此题考查了角平分线和平行线的性质,熟练掌握角平分线和平行线的有关性质是解题的关键.6.(1)∠ABC=100°;(2)∠ABC>∠AFC;(3)∠N=90°﹣∠HAP;理由见解析.【分析】(1)过点B作BMHD,则HDGEBM,根据平行线的性质求得∠ABM与∠CBM,便可求得最后结果;(2)过B作BPHDGE,过F作FQHDGE,由平行线的性质得,∠ABC=∠HAB+∠BCG,∠AFC=∠HAF+∠FCG,由角平分线的性质和已知角的度数分别求得∠HAF,∠FCG,最后便可求得结果;(3)过P作PKHDGE,先由平行线的性质证明∠ABC=∠HAB+∠BCG,∠AFC=∠HAF+∠FCG,再根据角平分线求得∠NPC与∠PCN,由后由三角形内角和定理便可求得结果.【详解】解:(1)过点B作BMHD,则HDGEBM,如图1,∴∠ABM=180°﹣∠DAB,∠CBM=∠BCG,∵∠DAB=120°,∠BCG=40°,∴∠ABM=60°,∠CBM=40°,∴∠ABC=∠ABM+∠CBM=100°;(2)过B作BPHDGE,过F作FQHDGE,如图2,∴∠ABP=∠HAB,∠CBP=∠BCG,∠AFQ=∠HAF,∠CFQ=∠FCG,∴∠ABC=∠HAB+∠BCG,∠AFC=∠HAF+∠FCG,∵∠DAB=120°,∴∠HAB=180°﹣∠DAB=60°,∵AF平分∠HAB,BC平分∠FCG,∠BCG=20°,∴∠HAF=30°,∠FCG=40°,∴∠ABC=60°+20°=80°,∠AFC=30°+40°=70°,∴∠ABC>∠AFC;(3)过P作PKHDGE,如图3,∴∠APK=∠HAP,∠CPK=∠PCG,∴∠APC=∠HAP+∠PCG,∵PN平分∠APC,∴∠NPC=∠HAP+∠PCG,∵∠PCE=180°﹣∠PCG,CN平分∠PCE,∴∠PCN=90°﹣∠PCG,∵∠N+∠NPC+∠PCN=180°,∴∠N=180°﹣∠HAP﹣∠PCG﹣90°+∠PCG=90°﹣∠HAP,即:∠N=90°﹣∠HAP.【点睛】本题考查了角平分线的定义,平行线性质和判定:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想与方程思想的应用,理清各角度之间的关系是解题的关键,也是本题的难点.7.①1,3;②0.6020;0.6990;③f(1.5),f(12);f(1.5)=3a-b+c-1,f(12)=2-b-2c.【分析】①根据定义可得:f(10b)=b,即可求得结论;②根据运算性质:f(mn)=f(m)+f(n),f()=f(n)-f(m)进行计算;③通过9=32,27=33,可以判断f(3)是否正确,同样依据5=,假设f(5)正确,可以求得f(2)的值,即可通过f(8),f(12)作出判断.【详解】解:①根据定义知:f(10b)=b,∴f(10)=1,f(103)=3.故答案为:1,3.②根据运算性质,得:f(4)=f(2×2)=f(2)+f(2)=2f(2)=0.3010×2=0.6020,f(5)=f()=f(10)-f(2)=1-0.3010=0.6990.故答案为:0.6020;0.6990.③若f(3)≠2a-b,则f(9)=2f(3)≠4a-2b,f(27)=3f(3)≠6a-3b,从而表中有三个对应的f(x)是错误的,与题设矛盾,∴f(3)=2a-b;若f(5)≠a+c,则f(2)=1-f(5)≠1-a-c,∴f(8)=3f(2)≠3-3a-3c,f(6)=f(3)+f(2)≠1+a-b-c,表中也有三个对应的f(x)是错误的,与题设矛盾,∴f(5)=a+c,∴表中只有f(1.5)和f(12)的对应值是错误的,应改正为:f(1.5)=f()=f(3)-f(2)=(2a-b)-(1-a-c)=3a-b+c-1,f(12)=f()=2f(6)-f(3)=2(1+a-b-c)-(2a-b)=2-b-2c.∵9=32,27=33,∴f(9)=2f(3)=2(2a-b)=4a-2b,f(27)=3f(3)=3(2a-b)=6a-3b.【点睛】本题考查了幂的应用,新定义运算等,解题的关键是深刻理解所给出的定义或规则,将它们转化为我们所熟悉的运算.8.(1)2;3﹣;(2)1、2、3;(3)256,4【分析】(1)依照定义进行计算即可;(2)由题可知,,则可得满足题意的整数的的值为1、2、3;(3)由,可知,是某个整数的平方,又是符合条件的所有数中最大的数,则,再依次进行计算.【详解】解:(1)由定义可得,,,.故答案为:2;.(2),,即,整数的值为1、2、3.故答案为:1、2、3.(3),即,可设,且是自然数,是符合条件的所有数中的最大数,,,,,,即.故答案为:256,4.【点睛】本题属于新定义类问题,主要考查估算无理数大小,无理数的整数部分和小数部分,理解定义内容是解题关键.9.(1)1022;(2)3066,2226;(3)【分析】(1)由于千位不能为0,最小只能取1;根据题目得出相应的公式:十位=2×千位﹣百位,个位=2×千位+百位,分别求出十位和个位,即可求出最小的四位依赖数;(2)设千位数字是x,百位数字是y,根据“依赖数”定义,则有:十位数字是(2x﹣y),个位数字是(2x+y),依据题意列出代数式然后表示为7的倍数加余数形式,然后求出x、y即可,从而求出所有特色数;(3)根据最小分解的定义可知:n越小,p、q越接近,nq﹣np才越小,才是最小分解,此时F(m)=,故将(2)中特色数分解,找到最小分解,然后将n、p、q的值代入F(m)=,再比较大小即可.【详解】解:(1)由题意可知:千位一定是1,百位取0,十位上的数字为:2×1-0=2,个位上的数字为:2×1+0=2则最小的四位依赖数是1022;(2)设千位数字是x,百位数字是y,根据“依赖数”定义,则有:十位数字是(2x﹣y),个位数字是(2x+y),根据题意得:100y+10(2x﹣y)+2x+y﹣3y=88y+22x=21(4y+x)+(4y+x),∵21(4y+x)+(4y+x)被7除余3,∴4y+x=3+7k,(k是非负整数)∴此方程的一位整数解为:x=4,y=5(此时2x+y>10,故舍去);x=3,y=7(此时2x﹣y<0,故舍去);x=3,y=0;x=2,y=2;x=1,y=4(此时2x﹣y<0,故舍去);∴特色数是3066,2226.(3)根据最小分解的定义可知:n越小,p、q越接近,nq﹣np才越小,才是最小分解,此时F(m)=,由(2)可知:特色数有3066和2226两个,对于3066=613×5+14=61×50+24∵1×613-1×5>2×61-2×50,∴3066取最小分解时:n=2,p=50,q=61∴F(3066)=对于2226=89×25+14=65×34+24,∵1×89-1×25>2×65-2×34,∴2226取最小分解时:n=2,p=34,q=65∴F(2226)=∵故所有“特色数”的F(m)的最大值为:.【点睛】此题考查的是新定义类问题,理解题意,并根据新定义解决问题是解决此题的关键.10.(1);;(2)①2;3;6.②这个乘客花费7元乘坐的地铁行驶的路程范围为:大于公里小于等于32公里.【分析】(1)根据题意,确定实数左侧第一个整数点所对应的数即得;(2)①根据表格确定乘坐里程的对应段,然后将乘坐里程分段计费并累加即得;②根据表格将每段的费用从左至右依次累加直至费用为7元,进而确定7元乘坐的具体里程即得.【详解】(1)∵∴∵∴故答案为:;.(2)①∵∴3.07公里需要2元∵∴7.93公里所需费用分为两段即:前4公里2元,后3.93公里1元∴7.93公里所需费用为:(元)∵∴公里所需费用分为三段计费即:前4公里2元,4至12公里2元,12公里至19.17公里2元;∴公里所需费用为:(元)故答案为:2;3;6.②由题意得:乘坐24公里所需费用分为三段:前4公里2元,4至12公里2元,12公里至24公里2元;∴乘坐24公里所需费用为:(元)∵由表格可知:乘坐24公里以上的部分,每一元可以坐8公里∴7元可以乘坐的地铁最大里程为:(公里)∴这个乘客花费7元乘坐的地铁行驶的路程范围为:大于公里小于等于32公里答:这个乘客花费7元乘坐的地铁行驶的路程范围为:大于公里小于等于32公里.【点睛】本题是阅读材料题,考查了实数的实际应用,根据材料中的新定义举一反三并挖掘材料中深层次含义是解题关键.11.(1)N,E,T密文为M,Q,P;(2)密文D,W,N的明文为F,Y,C.【分析】(1)
由图表找出N,E,T对应的自然数,再根据变换公式变成密文.(2)由图表找出N=M,Q,P对应的自然数,再根据变换.公式变成明文.【详解】解:(1)将明文NET转换成密文:即N,E,T密文为M,Q,P;(2)将密文D,W,N转换成明文:即密文D,W,N的明文为F,Y,C.【点睛】本题考查有理数的混合运算,此题较复杂,解答本题的关键是由图表中找到对应的数或字母,正确运用转换公式进行转换.12.初步探究:(1),8;(2)C;深入思考:(1),,;(2);(3)-5.【分析】初步探究:(1)根据除方运算的定义即可得出答案;(2)根据除方运算的定义逐一判断即可得出答案;深入思考:(1)根据除方运算的定义即可得出答案;(2)根据(1)即可总结出(2)中的规律;(3)先按照除方的定义将每个数的圈n次方算出来,再根据有理数的混合运算法则即可得出答案.【详解】解:初步探究:(1)2③=2÷2÷2=()⑤=(2)A:任何非零数的圈2次方就是两个相同数相除,所以都等于1,故选项A错误;B:因为多少个1相除都是1,所以对于任何正整数n,1ⓝ都等于1,故选项B错误;C:3④=3÷3÷3÷3=,4③=4÷4÷4=,3④≠4③,故选项C正确;D:负数的圈奇数次方,相当于奇数个负数相除,则结果是负数;负数的圈偶数次方,相当于偶数个负数相除,则结果是正数,故选项D错误;故答案选择:C.深入思考:(1)(-3)④=(-3)÷(-3)÷(-3)÷(-3)=
5⑥=5÷5÷5÷5÷5÷5=(-)⑩=(2)aⓝ=a÷a÷a…÷a=(3)原式====-5【点睛】本题主要考查了除方运算,运用到的知识点是有理数的混合运算,掌握有理数混合运算的法则是解决本题的关键.13.(1);(2);(3),点C的坐标为【分析】(1)由题意易得,然后可求a、b的值,进而问题可求解;(2)由(1)及题意易得,然后根据建立方程求解即可;(3)分别过点作轴于点P,轴于点Q,由题意易得,然后可得,进而可求t的值,最后根据(2)可得三角形的面积为3,则问题可求解.【详解】解:(1)∵,∴,∴,∴点,点;(2)由(1)可得点,点,∵轴于点,轴于点,轴于点,∴,,∵,∴,∵,且,∴,化简得;(3)分别过点作轴于点P,轴于点Q,如图所示:∵线段以每秒2个单位长度的速度向左水平移动到线段,时间为,∴,∵三角形和三角形的面积相等,∴,∴,∴,解得:,∴,由(2)可得三角形的面积为,∴三角形的面积为3,即,∴,∴.【点睛】本题主要考查图形与坐标、算术平方根与偶次幂的非负性及等积法,熟练掌握图形与坐标、算术平方根与偶次幂的非负性及等积法是解题的关键.14.(1)110°;(2)猜想:∠APB=∠DAP+∠FBP,理由见解析;(3)①∠P=2∠P1,理由见解析;②∠AP2B=.【分析】(1)过P作PM∥CD,根据两直线平行,内错角相等可得∠APM=∠DAP,再根据平行公理求出CD∥EF然后根据两直线平行,内错角相等可得∠MPB=∠FBP,最后根据∠APM+∠MPB=∠DAP+∠FBP等量代换即可得证;(2)结论:∠APB=∠DAP+∠FBP.(3)①根据(2)的规律和角平分线定义解答;②根据①的规律可得∠APB=∠DAP+∠FBP,∠AP2B=∠CAP2+∠EBP2,然后根据角平分线的定义和平角等于180°列式整理即可得解.【详解】(1)证明:过P作PM∥CD,∴∠APM=∠DAP.(两直线平行,内错角相等),∵CD∥EF(已知),∴PM∥CD(平行于同一条直线的两条直线互相平行),∴∠MPB=∠FBP.(两直线平行,内错角相等),∴∠APM+∠MPB=∠DAP+∠FBP.(等式性质)即∠APB=∠DAP+∠FBP=40°+70°=110°.(2)结论:∠APB=∠DAP+∠FBP.理由:见(1)中证明.(3)①结论:∠P=2∠P1;理由:由(2)可知:∠P=∠DAP+∠FBP,∠P1=∠DAP1+∠FBP1,∵∠DAP=2∠DAP1,∠FBP=2∠FBP1,∴∠P=2∠P1.②由①得∠APB=∠DAP+∠FBP,∠AP2B=∠CAP2+∠EBP2,∵AP2、BP2分别平分∠CAP、∠EBP,∴∠CAP2=∠CAP,∠EBP2=∠EBP,∴∠AP2B=∠CAP+∠EBP,=(180°-∠DAP)+(180°-∠FBP),=180°-(∠DAP+∠FBP),=180°-∠APB,=180°-β.【点睛】本题考查了平行线的性质,角平分线的定义,熟记性质与概念是解题的关键,此类题目,难点在于过拐点作平行线.15.(1)A(-2,0)、B(0,3);(2)∠APD=90°;(3)∠N的大小不变,∠N=45°【分析】(1)利用非负数的和为零,各项分别为零,求出a,b的值;(2)如图,作DM∥x轴,结合题意可设∠ADP=∠OAP=x,∠EAF=∠CAF=∠OAP=y,根据平角的定义可知∠OAD=90°-2y,由平行线的性质可得∠OAD+∠ADM=180°,即90-2y+2x+90°=180°,进而可得出x=y,再结合图形即可得出∠APD的度数;(3)∠N的大小不变,∠N=45°,如图,过D作DE∥BC,过N作NF∥BC,根据平行线的性质可知∠BMD+∠OAD=∠ADM=90°,然后根据角平分线的定义和平行线的性质,可得∠ANM=∠BMD+∠OAD,据此即可得到结论.【详解】(1)由,可得和,解得∴A的坐标是(-2,0)、B的坐标是(0,3);(2)如图,作DM∥x轴根据题意,设∠ADP=∠OAP=x,∠EAF=∠CAF=∠OAP=y,∵∠CAD=90°,∴∠CAE+∠OAD=90°,∴2y+∠OAD=90°,∴∠OAD=90°-2y,∵DM∥x轴,∴∠OAD+∠ADM=180°,∴90-2y+2x+90°=180°,∴x=y,∴∠APD=180°-(∠PAD+∠ADP)=180°-(y+90°-2y+x)=180°-90°=90°(3)∠N的大小不变,∠N=45°理由:如图,过D作DE∥BC,过N作NF∥BC.∵BC∥x轴,∴DE∥BC∥x轴,NF∥BC∥x轴,∴∠EDM=∠BMD,∠EDA=∠OAD,∵DM⊥AD,∴∠ADM=90°,∴∠BMD+∠OAD=∠EDM+∠EDA=∠ADM=90°,∵MN平分∠BMD,AN平分∠DAO,∴∠BMN=∠BMD,∠OAN=∠OAD,∴∠ANM=∠BMN+∠OAN=∠BMD+∠OAD=×90°=45°.【点睛】本题考查了坐标与图形性质:利用点的坐标计算出相应的线段的长和判断线段与坐标轴的位置关系.也考查了三角形内角和定理和三角形外角性质.16.(1)P3,P4;(2)(-0.5,3)或(-0.5,-1);(3);(4)或【分析】(1)根据题意分析,即可得到答案;(2)结合题意,首先求得线段中点C坐标,再根据题意分析,即可得到答案;(3)过点A作轴,过点C作轴,交于点D,过点A作,交y轴于点,过点C作,交y轴于点,根据三角形和直角坐标系的性质,得;再根据直角坐标系和等腰直角三角形性质,得,,从而得到答案;(4)根据题意,得线段中点坐标;再结合题意列不等式并求解,即可得到答案.【详解】(1)根据题意,点P1(2,3)、P2(﹣5,0)、P3(﹣1,﹣2),P4(﹣,4)中,线段AB的内垂点为P3(﹣1,﹣2),P4(﹣,4)故答案为:P3,P4;(2)∵A(﹣2,1),B(1,1)∴线段中点C坐标为:,即∵点M是线段AB的最佳内垂点且到线段AB的距离是2∴当或,即当或时,|AQ-BQ|=0,为最小值故答案为:(-0.5,3)或(-0.5,-1);(3)如图,过点A作轴,过点C作轴,交于点D,过点A作,交y轴于点,过点C作,交y轴于点,∵点A(﹣2,1),C(﹣4,3)∴,,∴∴,,即,∴故答案为:;(4)∵点D(m,0),E(m+4,0)∴线段中点坐标为根据题意,得:当时,;当时,;∴或.【点睛】本题考查了直角坐标系、一元一次不等式知识;解题的关键是熟练掌握直角坐标系、一元一次不等式、坐标的性质,从而完成求解.17.(1),2;(2)或;(3)或2【分析】(1)由,求出和的值即可;(2)过点作直线轴,延长交于,设出点坐标,根据面积关系求出点坐标,再求出的长度,即可求出值;(3)先根据求出点坐标,再根据面积关系求出值即可.【详解】解:(1),,,,,故答案为,2;(2)如图1,过作直线垂直于轴,延长交直线于点,设的坐标为,过作交直线于点,连接,,,,解得,,,又点满足的面积等于6,,解得或;(3)如图2,延长交轴于,过作轴于,过作轴于,,,解得,,,,解得,,,,由题知,当秒时,,,,,,,,解得或2.【点睛】本题是三角形综合题,考查三角形的面积,熟练掌握直角坐标系的知识,三角形的面积,梯形面积等知识是解题的关键.18.(1)B(3,4),7;(2);(3)或【分析】(1)由算术平方根的意义可求出a,b的值,可求出B点的坐标,过点B作BH⊥x轴于点H,过点A作AM⊥BH于点M,过点E作EN⊥AM于点N,连接EM,由三角形面积公式可得出答案;(2)当点C在x轴上时,此时m=2,当点D在x轴上时,m=4,由题意可得出答案;(3)根据点C和点D不同的位置,由坐标与图形的性质及三角形面积公式可得出答案.【详解】解:(1)∵,∴,∴b=4,∴=0,∴a-3=0,∴a=3,∴B(3,4),∴过点B作BH⊥x轴于点H,过点A作AM⊥BH于点M,过点E作EN⊥AM于点N,连接EM,则S△ABE=S△ABM+S△EBM+S△AME=×2×2+×2×3+×2×2=7;(2)当点C在x轴上时,此时m=2,当点D在x轴上时,m=4,∴2≤m≤4时,线段CD与x轴有公共点;(3)当点C在x轴上时,此时m=2,C(1,0),D(3,2),S△CDE=5,当点D在x轴上时,此时m=4,C(1,-2),D(3,0),S△CDE=3,当点C在x轴下方时,点D在x轴上方时,且S△CDE=4,如图2,分别过点C,D作x轴,y轴平行线交于点G,连接GE,过点E作EH⊥CG于点H,∵C(1,2-m),D(3,4-m),∴CG=2,DG=2,EH=m-2,∴S△CDE=S△CDG+S△EDG-S△CEG,∴4=×2×2+×2×3−×2•(m−2),∴m=3.∴当2≤m≤3时,4≤S≤5;当C,D均为x轴下方时,如图3,∵CG=DG=2,GH=3,EH=m-2,∴S△CDE=S△ECG-S△CDG-S△EDG,∴S△CDE=×2•(m−2)-×2×2−×2×3=m-7,当m-7=4时,m=11,当m-7=5时,m=12,∴当11≤m≤12时,4≤S≤5.综合以上可得,当2≤m≤3或11≤m≤12时,4≤S≤5.【点睛】本题是几何变换综合题,考查了三角形的面积,坐标与图形的性质,平移的性质,正确进行分类讨论是解题的关键.19.(1)60,40;(2)①甲:85;乙50;②27【分析】(1)由图示列出关于a、b的二元一次方程组求解.(2)①根据已知和图示计算出两种裁法共产生甲型板材和乙型板材的张数;②根据竖式与横式礼品盒所需要的甲、乙两种型号板材的张数列出关于m、n的二元一次方程,求解,即可得出结论.【详解】解:(1)依题意,得:解得:a=60b=40答:a、b的值分别为60,40.(2)①一共可裁剪出甲型板材40×2+5=85(张)乙型板材40+5×2=50(张).故答案是:85,50;②设可做成m个竖式无盖装饰盒,n个横式无盖装饰盒.依题意得:,解得:m=4,n=23所以m+n=27,故答案为27个【点睛】本题考查的知识点是二元一次方程组的应用,关键是根据已知先列出二元一次方程组求出a、b的值,根据图示列出算式以及关于m、n的二元一次方程.20.(1)方程的正整数解是或.(只要写出其中的一组即可);(2)满足条件x的值有4个:x=3或x=4或x=5或x=8;(3)有两种购买方案:即购买单价为3元的笔记本5本,单价为5元的钢笔4支;或购买单价为3元的笔记本10本,单价为5元的钢笔1支.【解析】(1)---------------------------.(2)C(3)解:设购买单价为3元的笔记本x个,购买单价5元的钢笔y个,由题意得:3x+5y=35此方程的正整数解为有两种购买方案:方案一:购买单价为3元的笔记本5个,购买单价为5元的钢笔4支.方案二:购买单价为3元的笔记本10个,购买单价为5元的钢笔1支(1)只要使等式成立即可(2)x-2必须是6的约数(3)设购买单价为3元的笔记本x个,购买单价5元的钢笔y个,根据题意列二元一次方程,去正整数解求值21.1【分析】利用AM:AN=8:9,设通道的宽为xm,AM=8ym,则AN=9ym,进而利用AD为18m,AB为13m,得出等式求出即可.【详解】设通道的宽是xm,AM=8ym.因为AM∶AN=8∶9,所以AN=9ym.所以解得答:通道的宽是1m.故答案为1.【点睛】本题考查了二元一次方程组的应用.22.(1);(2);(3)与之间的数量关系为.【分析】(1)根据非负数的性质和解二元一次方程组求解即可;(2)设,先根据平移的性质可得,过D作轴于P,再根据三角形ADP的面积得出,从而可得,然后根据线段的和差可得,由此即可得出答案;(3)设AH与CD交于点Q,过H,G分别作DF的平行线MN,KJ,设,由平行线的性质可得,由此即可得出结论.【详解】(1)∵,且∴解得:则;(2)设∵将线段AB平移得到CD,∴由平移的性质得如图1,过D作轴于P∴∵∴即解得∴∴;(3)与之间的数量关系为,求解过程如下:如图2,设AH与CD交于点Q,过H,G分别作DF的平行线MN,KJ∵HD平分,HF平分∴设∵AB平移得到CD∴∴,∴∵∴∴∵∴∴∴.【点睛】本题属于一道较难的综合题,考查了解二元一次方程组、平移的性质、平行线的性质等知识点,较难的是题(3),通过作两条辅助线,构造平行线,从而利用平行线的性质是解题关键.23.(1)7441不是“诚勤数”;5463是“诚勤数”;(2)满足条件的A为:2314或5005或3250.【分析】(1)直接利用定义进行验证,即可得到答案;(2)由题意,设这个四位数的十位数是a,千位数是b,则个位数为(5a),百位数为(5b),然后根据13的倍数关系,以及“5类诚勤数”的定义,利用分类讨论的进行分析,即可得到答案.【详解】解:(1)在7441中,7+4=11,4+1=5,∵115,∴7441不是“诚勤数”;在5436中,∵5+4=6+3=9,∴5463是“诚勤数”;(2)根据题意,设这个四位数的十位数是a,千位数是b,则个位数为(5a),百位数为(5b),且,,∴这个四位数为:,∵,,∴,∵这个四位数是13的倍数,∴必须是13的倍数;∵,,∴在时,取到最大值60,∴可以为:2、15、28、41、54,∵,则是3的倍数,∴或,∴或;①当时,,∵,且a为非负整数,∴或,∴或,若,则,此时;若,则,此时;②当时,,∵,且a为非负整数,∴是3的倍数,且,∴,∴,则,∴;综合上述,满足条件的A为:2314或5005或3250.【点睛】本题考查了二元一次方程,新定义的运算法则,解题的关键是熟练掌握题意,正确列出二元一次方程,结合新定义,利用分类讨论的思想进行解题.24.(1);(2);(3)或4.【分析】(1)先求出是二元一次方程组的解,然后代入A、B的坐标即可解答;(2)先求出OC的长,分点P在线段OB上和OB的延长线上两种情况,分别利用三角形面积公式计算即可;(3)分两种情况解答:①当点P在线段OB上时,连接PQ,过点M作PM⊥AC交AC的延长线于M,可得OP=2CQ,构建方程解答即可;②当点P在BO的延长线上时,同理可解.【详解】解:(1)解二元一次方程组,得:∴A(6,7),B(-8,0);(2)①当点P在线段OB上时,BP=4t,OP=8-4t,∴②当点P在OB延长线上时,综上所述;(3)①当点P在线段OB上时,如图:连接PQ,过点M作PM⊥AC交AC的延长线于M,又;②当在线段延长线上时同理可得:.综上,满足题意t的值为或4.【点睛】本题主要考查了三角形的面积、二元一次方程组等知识点,学会用分类讨论的思想思考问题以及利用面积法解决线段之间的关系成为解答本题的关键.25.(1)每副乒乓球拍单价为50元,每个乒乓球的单价为1元;(2)4000元,4320元;(3)3200+20m,3600+18m;(4)若甲商店花钱少,则3200+20m<3600+18m;解得m<200;若乙商店花费少,则3200+20m>3600+18m,解得m>200;若甲商店和乙商店一样多时,则3200+20m=3600+18m,解得m=200;综上所述100<m<200时甲商店优惠m>200时乙商店优惠m=200时两家商店一样【分析】(1)设每副乒乓球拍单价为x元,每个乒乓球的单价为y元.根据题意列出二元一次方程组,解答即可;(2)利用(1)中求得的价格即可解答;(3)分别用含m的代数式表示在甲、乙两家商店购买所花的费用即可;(4)利用(3)求得的代数式,进行分类讨论即可.【详解】解:(1)设每副乒乓球拍单价为x元,每个乒乓球的单价为y元.由题意可知解得答:每副乒乓球拍单价为50元,每个乒乓球的单价为1元.(2)甲商店:(元);乙商店:(元)故答案为:4000元;4320元;(3)在甲商店购买的费用为:在乙商店购买的费用为:(4)若甲商店花钱少,则3200+20m<3600+18m解得m<200若乙商店花费少,则3200+20m>3600+18m,解得m>200,若甲商店和乙商店一样多时,则3200+20m=3600+18m,解得m=200综上所述100<m<200时甲商店优惠m>200时乙商店优惠m=200时两家商店一样.【点睛】本题考查了二元一次方程组的应用以及方案的选择,审清题意,列出方程组是解题关键.26.(1)7;(2)x≥7;(3)或x<3;(4)详见解析.【分析】(1)先判断a、b的大小,再根据相应公式计算可得;(2)结合公式知3x﹣4≥2x+3,解之可得;(3)由题意可得或,分别求解可得;(4)先利用作差法判断出2x2﹣2x+4>x2+4x﹣6,再根据公式计算(2x2﹣2x+4)※(x2+4x﹣6)即可.【详解】(1)(﹣2)※3=2×(﹣2)﹣3=﹣7.故答案为:﹣7;(2)∵(3x﹣4)※(2x+3)=2(3x﹣4)+(2x+3),∴3x﹣4≥2x+3,解得:x≥7.故答案为:x≥7.(3)由题意可知分两种情况讨论:①,解得;②,解得;综上:x的取值范围为或x<3;(4)∵2x2﹣2x+4﹣(x2+4x﹣6)=x2﹣6x+10=(x﹣3)2+1>0∴2x2﹣2x+4>x2+4x﹣6,∴原式=2(2x2﹣2x+4)+(x2+4x﹣6)=4x2﹣4x+8+x2+4x﹣6=5x2+4;∴小明计算错误.【点睛】本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤和弄清新定义是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.27.(1)2,7,4;(2);(3)①t的内数;②符合条件的最大实心正方形有2个,离原点最远的格点的坐标有两个,为.【分析】(1)根据内数的定义即可求解;(2)根据内数的定义可列不等式,求解即可;(3)①分析可得当时,即t的内数为2时,;当时,即t的内数为3时,,当时,即t的内数为4时,……归纳可得结论;②分析可得当t的内数为奇数时,最大实心正方形有2个;当t的内数为偶数时,最大实心正方形有1个;且最大实心正方形的边长为:的內数-1,即可求解.【详解】解:(1),所以1的内数是2;,所以20的内数是7;,所以6的内数是4;(2)∵3是x的內数,∴,解得;(3)①当时,即t的内数为2时,;当时,即t的内数为3时,,当时,即t的内数为4时,,……∴t的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 大学英语期考试题及答案
- 中国太阳能高纯度硅材料项目商业计划书
- 大学创意绘画考试题及答案
- 排版工作协议书
- 青蓝工程协议书
- 急救急诊考试试题及答案
- 机械cad高级考试试题及答案
- 中国金属表面酸洗剂项目创业投资方案
- 初级厨师考试题目及答案
- 农村户口分户协议书
- 2024年12月管理体系认证基础考试真题及答案
- 设计节电方案(课件)五年级上册综合实践活动教科版
- GB/T 15597.2-2024塑料聚甲基丙烯酸甲酯(PMMA)模塑和挤出材料第2部分:试样制备和性能测定
- 医之有“道”告别难“咽”之隐-基于5A护理模式在脑卒中恢复期患者改善吞咽障碍中的应用
- 数字货币概论 课件 第5章 稳定币的原理与实现
- 现代礼仪与沟通(大学生礼仪沟通课程)全套教学课件
- 坚持立足中国又面向世界讲解
- 《昆虫的美食》课件
- 制程工序能力分析报告
- TRIZ试题库资料整理
- 双室平衡容器原理
评论
0/150
提交评论