2026届日照市数学九年级第一学期期末综合测试模拟试题含解析_第1页
2026届日照市数学九年级第一学期期末综合测试模拟试题含解析_第2页
2026届日照市数学九年级第一学期期末综合测试模拟试题含解析_第3页
2026届日照市数学九年级第一学期期末综合测试模拟试题含解析_第4页
2026届日照市数学九年级第一学期期末综合测试模拟试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2026届日照市数学九年级第一学期期末综合测试模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每小题3分,共30分)1.实施新课改以来,某班学生经常采用“小组合作学习”的方式进行学习,学习委员小兵每周对各小组合作学习的情况进行了综合评分.下表是其中一周的统计数据:组别1234567分值90959088909285这组数据的中位数和众数分别是A.88,90 B.90,90 C.88,95 D.90,952.函数y=-x2-3的图象顶点是()A. B. C. D.3.下列事件中,属于必然事件的是()A.任意购买一张电影票,座位号是奇数B.明天晚上会看到太阳C.五个人分成四组,这四组中有一组必有2人D.三天内一定会下雨4.一元二次方程的根的情况是()A.有两个相等的实数根 B.有两个不相等的实数根C.只有一个实数根 D.没有实数根5.如图,空地上(空地足够大)有一段长为的旧墙,小敏利用旧墙和木栏围成一个矩形菜园,已知木栏总长,矩形菜园的面积为.若设,则可列方程()A. B.C. D.6.如图,点A、B、C在⊙O上,若∠BAC=45°,OB=2,则图中阴影部分的面积为()A.π﹣2 B. C.π﹣4 D.7.抛物线y=x2+bx+c(其中b,c是常数)过点A(2,6),且抛物线的对称轴与线段y=0(1≤x≤3)有交点,则c的值不可能是()A.4 B.6 C.8 D.108.如图,在正方形中,为边上的点,连结,将绕点逆时针方向旋转得到,连结,若,则的度数为()A. B. C. D.9.如图,是的直径,弦于点,如果,,那么线段的长为()A.6 B.8 C.10 D.1210.如图,已知△ABC中,∠ACB=90°,AC=BC=2,将直角边AC绕A点逆时针旋转至AC′,连接BC′,E为BC′的中点,连接CE,则CE的最大值为().A. B. C. D.二、填空题(每小题3分,共24分)11.如图,已知圆锥的高为,高所在直线与母线的夹角为30°,圆锥的侧面积为_____.12.已知扇形的弧长为2π,圆心角为60°,则它的半径为________.13.一元二次方程x2=x的解为.14.在Rt△ABC中,两直角边的长分别为6和8,则这个三角形的外接圆的直径长为__.15.请写出“两个根分别是2,-2”的一个一元二次方程:_______________16.已知,二次函数的图象如图所示,当y<0时,x的取值范围是________.17.如图,在正方形ABCD中,AB=4,点M在CD的边上,且DM=1,ΔAEM与ΔADM关于AM所在的直线对称,将ΔADM按顺时针方向绕点A旋转90°得到ΔABF,连接EF,则线段EF的长为_________18.一组数据,,,,的众数是,则=_________.三、解答题(共66分)19.(10分)如图为放置在水平桌面上的台灯的平面示意图,灯臂AO长为40cm,与水平面所形成的夹角∠OAM为75°.由光源O射出的边缘光线OC,OB与水平面所形成的夹角∠OCA,∠OBA分别为90°和30°,求该台灯照亮水平面的宽度BC(不考虑其他因素,结果精确到0.1cm.温馨提示:sin75°≈0.97,cos75°≈0.26,).20.(6分)如图,四边形OABC是矩形,A、C分别在y轴、x轴上,且OA=6cm,OC=8cm,点P从点A开始以2cm/s的速度向B运动,点Q从点B开始以1cm/s的速度向C运动,设运动时间为t.(1)如图(1),当t为何值时,△BPQ的面积为4cm2?(2)当t为何值时,以B、P、Q为顶点的三角形与△ABC相似?(3)如图(2),在运动过程中的某一时刻,反比例函数y=的图象恰好同时经过P、Q两点,求这个反比例函数的解析式.21.(6分)如图,把一个木制正方体的表面涂上颜色,然后将正方体分割成64个大小相同的小正方体.从这些小正方体中任意取出一个,求取出的小正方体:(1)三面涂有颜色的概率;(2)两面涂有颜色的概率;(3)各个面都没有颜色的概率.22.(8分)如图,在△ABC中,AB=AC,点D、E在边BC上,∠DAE=∠B=30°,且,那么的值是______.23.(8分)如图,抛物线与x轴交于A、B两点(点A在点B左侧),与y轴交于点C,且当x=﹣1和x=3时,y值相等.直线y=与抛物线有两个交点,其中一个交点的横坐标是6,另一个交点是这条抛物线的顶点M.(1)求这条抛物线的表达式.(2)动点P从原点O出发,在线段OB上以每秒1个单位长度的速度向点B运动,同时点Q从点B出发,在线段BC上以每秒2个单位长度的速度向点C运动,当一个点到达终点时,另一个点立即停止运动,设运动时间为t秒.①求t的取值范围.②若使△BPQ为直角三角形,请求出符合条件的t值;③t为何值时,四边形ACQP的面积有最小值,最小值是多少?直接写出答案.24.(8分)如图,已知抛物线与y轴交于点,与x轴交于点,点P是线段AB上方抛物线上的一个动点.求这条抛物线的表达式及其顶点坐标;当点P移动到抛物线的什么位置时,使得,求出此时点P的坐标;当点P从A点出发沿线段AB上方的抛物线向终点B移动,在移动中,点P的横坐标以每秒1个单位长度的速度变动;与此同时点M以每秒1个单位长度的速度沿AO向终点O移动,点P,M移动到各自终点时停止当两个动点移动t秒时,求四边形PAMB的面积S关于t的函数表达式,并求t为何值时,S有最大值,最大值是多少?25.(10分)在Rt△ABC中,AC=BC,∠C=90°,求:(1)cosA;(2)当AB=4时,求BC的长.26.(10分)已知点M(2,a)在反比例函数y=(k≠0)的图象上,点M关于原点中心对称的点N在一次函数y=﹣2x+8的图象上,求此反比例函数的解析式.

参考答案一、选择题(每小题3分,共30分)1、B【解析】中位数是一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数).由此将这组数据重新排序为85,88,1,1,1,92,95,∴中位数是按从小到大排列后第4个数为:1.众数是在一组数据中,出现次数最多的数据,这组数据中1出现三次,出现的次数最多,故这组数据的众数为1.故选B.2、C【解析】函数y=-x2-3的图象顶点坐标是(0,-3).故选C.3、C【分析】根据事件发生的可能性大小判断相应事件的类型即可.【详解】A、任意购买一张电影票,座位号是奇数是随机事件;B、明天晚上会看到太阳是不可能事件;C、五个人分成四组,这四组中有一组必有2人是必然事件;D、三天内一定会下雨是随机事件;故选:C.本题考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件;不可能事件是指在一定条件下,一定不发生的事件;不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.4、D【分析】先计算判别式的值,然后根据判别式的意义判断方程根的情况.【详解】∵△=62-4×(-1)×(-10)=36-40=-4<0,

∴方程没有实数根.

故选D.此题考查一元二次方程的根的判别式,解题关键在于掌握方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.5、B【分析】设,则,根据矩形面积公式列出方程.【详解】解:设,则,由题意,得.故选.考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.6、A【分析】先证得三角形OBC是等腰直角三角形,通过解直角三角形求得BC和BC边上的高,然后根据S阴影=S扇形OBC-S△OBC即可求得.【详解】∵∠BAC=45°,∴∠BOC=90°,∴△OBC是等腰直角三角形,∵OB=2,∴△OBC的BC边上的高为:,∴∴S阴影=S扇形OBC-S△OBC=,故选:A.本题考查了扇形的面积公式:(n为圆心角的度数,R为圆的半径).也考查了等腰直角三角形三边的关系和三角形的面积公式.7、A【解析】试题分析:根据抛物线y=x2+bx+c(其中b,c是常数)过点A(2,6),且抛物线的对称轴与线段y=0(1≤x≤3)有交点,可以得到c的取值范围,从而可以解答本题.∵抛物线y=x2+bx+c(其中b,c是常数)过点A(2,6),且抛物线的对称轴与线段y=0(1≤x≤3)有交点,∴解得6≤c≤14考点:二次函数的性质8、D【分析】根据旋转的性质可知,然后得出,最后利用即可求解.【详解】∵绕点逆时针方向旋转得到,∴,,∴.故选:D.本题主要考查旋转的性质及等腰直角三角形的性质,掌握旋转的性质及等腰直角三角形的性质是解题的关键.9、A【分析】连接OD,由直径AB与弦CD垂直,根据垂径定理得到E为CD的中点,由CD的长求出DE的长,又由直径的长求出半径OD的长,在直角三角形ODE中,由DE及OD的长,利用勾股定理即可求出OE的长.【详解】解:如图所示,连接OD.

∵弦CD⊥AB,AB为圆O的直径,

∴E为CD的中点,

又∵CD=16,

∴CE=DE=CD=8,

又∵OD=AB=10,

∵CD⊥AB,∴∠OED=90°,

在Rt△ODE中,DE=8,OD=10,

根据勾股定理得:OE==6,

则OE的长度为6,

故选:A.本题主要考查了垂径定理,勾股定理,解答此类题常常利用垂径定理由垂直得中点,进而由弦长的一半,弦心距及圆的半径构造直角三角形,利用勾股定理是解答此题的关键.10、B【分析】取AB的中点M,连接CM,EM,当CE=CM+EM时,CE的值最大,根据旋转的性质得到AC′=AC=2,由三角形的中位线的性质得到EMAC′=2,根据勾股定理得到AB=2,即可得到结论.【详解】取AB的中点M,连接CM,EM,∴当CE=CM+EM时,CE的值最大.∵将直角边AC绕A点逆时针旋转至AC′,∴AC′=AC=2.∵E为BC′的中点,∴EMAC′=2.∵∠ACB=90°,AC=BC=2,∴AB=2,∴CMAB,∴CE=CM+EM.故选B.本题考查了旋转的性质,直角三角形的性质,三角形的中位线的性质,正确的作出辅助线是解题的关键.二、填空题(每小题3分,共24分)11、2π【解析】试题分析:如图,∠BAO=30°,AO=,在Rt△ABO中,∵tan∠BAO=,∴BO=tan30°=1,即圆锥的底面圆的半径为1,∴AB=,即圆锥的母线长为2,∴圆锥的侧面积=.考点:圆锥的计算.12、6.【解析】分析:设扇形的半径为r,根据扇形的面积公式及扇形的面积列出方程,求解即可.详解:设扇形的半径为r,根据题意得:60πr解得:r=6故答案为6.点睛:此题考查弧长公式,关键是根据弧长公式解答.13、x1=0,x2=1.【解析】试题分析:首先把x移项,再把方程的左面分解因式,即可得到答案.解:x2=x,移项得:x2﹣x=0,∴x(x﹣1)=0,x=0或x﹣1=0,∴x1=0,x2=1.故答案为x1=0,x2=1.考点:解一元二次方程-因式分解法.14、1.【分析】根据题意,写出已知条件并画出图形,然后根据勾股定理即可求出AB,再根据圆周角为直角所对的弦是直径即可得出结论.【详解】如图,已知:AC=8,BC=6,由勾股定理得:AB==1,∵∠ACB=90°,∴AB是⊙O的直径,∴这个三角形的外接圆直径是1;故答案为:1.此题考查的是求三角形的外接圆的直径,掌握圆周角为直角所对的弦是直径是解决此题的关键.15、【分析】可先分别写出解为2,-2的一元一次方程(此一元一次方程的等式右边为0),然后逆运用因式分解法即可.【详解】解:因为x+2=0的解为x=-2,x-2=0的解为x=2,所以的两个根分别是2,-2,可化为.故答案为:.本题考查一元二次方程的解,因式分解法解一元二次方程.因式分解法是令等式的一边为0,另一边分解为两个一次因式乘积的形式,这两个一次因式为0时的解为一元二次方程的两个解.而本题可先分别写出两个值为0时解为2和-2的一次因式,这两个一次因式的乘积即可作为一元二次方程等式的一边,等式的另外一边为0.16、【分析】直接利用函数图象与x轴的交点再结合函数图象得出答案.【详解】解:如图所示,图象与x轴交于(-1,0),(1,0),故当y<0时,x的取值范围是:-1<x<1.故答案为:-1<x<1.此题主要考查了抛物线与x轴的交点,正确数形结合分析是解题关键.17、2【分析】连接BM.先判定△FAE≌△MAB(SAS),即可得到EF=BM.在Rt△BCM中,利用勾股定理即可得到BM的值.【详解】如图,连接BM.∵△AEM与△ADM关于AM所在的直线对称,∴AE=AD,∠MAD=∠MAE.∵△ADM按照顺时针方向绕点A旋转90°得到△ABF,∴AF=AM,∠FAB=∠MAD,∴∠FAB=∠MAE,∴∠FAB+∠BAE=∠BAE+∠MAE,∴∠FAE=∠MAB,∴△FAE≌△MAB(SAS),∴EF=BM.因为正方形ABCD的边长为1,则MC=1-1=3,BC=1.在Rt△BCM中,∵BC2+MC2=BM2,∴12+32=BM2,解得:BM=2,∴EF=BM=2.故答案为:2.本题考查了正方形的性质,勾股定理,全等三角形的判定与性质以及旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.18、【解析】根据众数的概念求解可得.【详解】∵数据4,3,x,1,1的众数是1,∴x=1,故答案为1.本题主要考查众数,求一组数据的众数的方法:找出频数最多的那个数据,若几个数据频数都是最多且相同,此时众数就是这多个数据.三、解答题(共66分)19、该台灯照亮水平面的宽度BC大约是67.1cm.【解析】试题分析:根据sin75°=,求出OC的长,根据tan10°=,再求出BC的长,即可求解.试题解析:在直角三角形ACO中,sin75°=≈0.97,解得OC≈18.8,在直角三角形BCO中,tan10°==≈,解得BC≈67.1.答:该台灯照亮水平面的宽度BC大约是67.1cm.考点:解直角三角形的应用.20、(1)t=2s时,△PBQ的面积为1;(2)t为s或s时,以B、P、Q为顶点的三角形与△ABC相似;(3)y=【分析】(1)利用三角形的面积公式构建方程求出t即可解决问题.(2)分两种情形分别利用相似三角形的性质构建方程即可解决问题.(3)求出P,Q两点坐标,利用待定系数法构建方程求出t的值即可解决问题.【详解】(1)由题意AB=OC=8cm,AO=BC=6cm,∠B=90°,∵PA=2t,BQ=t,∴PB=8﹣2t,∵△BPQ的面积为1cm2,∴•(8﹣2t)•t=1,解得t=2,∴t=2s时,△PBQ的面积为1.(2)①当△BPQ∽△BAC时,=,∴=,解得t=.②当△BPQ∽△BCA时,=,∴=,解得t=,∴t为s或s时,以B、P、Q为顶点的三角形与△ABC相似.(3)由题意P(2t,6),Q(8,6﹣t),∵反比例函数y=的图象恰好同时经过P、Q两点,∴12t=8(6﹣t),解得t=,∴P(,6),∴,∴反比例函数的解析式为y=.本题主要考查了相似三角形的判定与性质以及反比例函数的性质,属于综合性比较强的题.21、(1);(2);(3)【分析】(1)三面涂有颜色的小正方体是在8个顶点处,共8个,再根据概率公式解答即可;

(2)两面涂有颜色的小正方体是在12条棱的中间处,共24个,再根据概率公式解答即可;

(3)各个面都没有颜色的小正方体是在6个面的中间处,共8个,再根据概率公式解答即可.【详解】解:(1)因为三面涂有颜色的小正方体有8个,所以P(三面涂有颜色)=;(2)因为两面涂有颜色的小正方体有24个,所以P(两面涂有颜色)=;(3)因为各个面都没有涂颜色的小正方体共有8个,所以P(各个面都没有涂颜色)=.本题考查几何概率,等可能事件的概率=所求情况数与总情况数之比.关键是找到相应的具体数目.22、.【分析】由已知可得,从而可知,,设AB=3x,则BE=2x,再利用勾股定理和等腰三角形性质用x表示DE和BC,从而解答【详解】解:∵∠BAE=∠DAE+∠BAD,∠ADE=∠B+∠BAD,又∵∠DAE=∠B=30°,∴∠BAE=∠ADE,∴,∴,,过A点作AH⊥BC,垂足为H,设AB=3x,则BE=2x,∵∠B=30°,∴,,∴,在中,,又∵,∴,∴,∵AB=AC,AH⊥BC,∴,∴,故答案为:.本题考查了相似三角形的判定和性质、等腰三角形的性质以及勾股定理,利用三角形相似得到AB与BE的关系是解题的关键.23、(1);(2)①,②t的值为或,③当t=2时,四边形ACQP的面积有最小值,最小值是.【分析】(1)求出对称轴,再求出y=与抛物线的两个交点坐标,将其代入抛物线的顶点式即可;(2)①先求出A、B、C的坐标,写出OB、OC的长度,再求出BC的长度,由运动速度即可求出t的取值范围;②当△BPQ为直角三角形时,只存在∠BPQ=90°或∠PQB=90°两种情况,分别证△BPQ∽△BOC和△BPQ∽△BCO,即可求出t的值;③如图,过点Q作QH⊥x轴于点H,证△BHQ∽△BOC,求出HQ的长,由公式S四边形ACQP=S△ABC-S△BPQ可求出含t的四边形ACQP的面积,通过二次函数的图象及性质可写出结论.【详解】解:(1)∵在抛物线中,当x=﹣1和x=3时,y值相等,∴对称轴为x=1,∵y=与抛物线有两个交点,其中一个交点的横坐标是6,另一个交点是这条抛物线的顶点M,∴顶点M(1,),另一交点为(6,6),∴可设抛物线的解析式为y=a(x﹣1)2,将点(6,6)代入y=a(x﹣1)2,得6=a(6﹣1)2,∴a=,∴抛物线的解析式为(2)①在中,当y=0时,x1=﹣2,x2=4;当x=0时,y=﹣3,∴A(﹣2,0),B(4,0),C(0,﹣3),∴在Rt△OCB中,OB=4,OC=3,∴BC==5,∴,∵<4,∴②当△BPQ为直角三角形时,只存在∠BPQ=90°或∠PQB=90°两种情况,当∠BPQ=90°时,∠BPQ=∠BOC=90°,∴PQ∥OC,∴△BPQ∽△BOC,∴,即,∴t=;当∠PQB=90°时,∠PQB=∠BOC=90°,∠PBQ=∠CBO,∴△BPQ∽△BCO,∴,即,∴t=,综上所述,t的值为或;③如右图,过点Q作QH⊥x轴于点H,则∠BHQ=∠BOC=90°,∴HQ∥OC,∴△BHQ∽△BOC,∴,即,∴HQ=,∴S四边形ACQP=S△ABC﹣S△BPQ=×6×3﹣(4﹣t)×t=(t﹣2)2+,∵>0,∴当t=2时,四边形ACQP的面积有最小值,最小值是.本题考查了待定系数法求解析式,相似三角形的判定及性质,二次函数的图象及性质等,熟练掌握并灵活运用是解题的关键.24、(1)抛物线的表达式为,抛物线的顶点坐标为;(2)P点坐标为;(3)当时,S有最大值,最大值为1.

【解析】分析:(1)由A、B坐标,利用待定系数法可求得抛物线的表达式,化为顶点式可求得顶点坐标;(2)过P作PC⊥y轴于点C,由条件可求得∠PAC=60°,可设AC=m,在Rt△PAC中,可表示出PC的长,从而可用m表

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论