版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2026届江苏省大丰区金丰路初级中学数学九上期末综合测试试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.反比例函数y=的图象,在每个象限内,y的值随x值的增大而增大,则k可以为()A.0 B.1 C.2 D.32.方程的解是()A.x=0 B.x=1 C.x=0或x=1 D.x=0或x=-13.若方程x2+3x+c=0没有实数根,则c的取值范围是()A.c< B.c< C.c> D.c>4.下列四种图案中,不是中心对称图形的为()A. B. C. D.5.如图,任意转动正六边形转盘一次,当转盘停止转动时,指针指向大于3的数的概率是()A. B. C. D.6.如图,过⊙O上一点C作⊙O的切线,交⊙O直径AB的延长线于点D.若∠D=40°,则∠A的度数为()A.20° B.25° C.30° D.40°7.如图,在Rt△ABC中BC=2,以BC的中点O为圆心的⊙O分别与AB,AC相切于D,E两点,的长为()A. B. C.π D.2π8.下列四个图形分别是四届国际数学家大会的会标,其中不属于中心对称图形的是()A. B. C. D.9.在Rt△ABC中,∠C=90°,若斜边AB是直角边BC的3倍,则tanB的值是()A. B.3 C. D.210.一同学将方程化成了的形式,则m、n的值应为()A.m=1.n=7 B.m=﹣1,n=7 C.m=﹣1,n=1 D.m=1,n=﹣711.如图,在△ABC中,AB=2.2,BC=3.6,∠B=60°,将△ABC绕点A按逆时针方向旋转得到△ADE,若点B的对应点D恰好落在BC边上时,则CD的长为()A.1.5 B.1.4 C.1.3 D.1.212.如图,AB是半圆O的直径,半径OC⊥AB于O,AD平分∠CAB交于点D,连接CD,OD,BD.下列结论中正确的是()A.AC∥OD B.C.△ODE∽△ADO D.二、填空题(每题4分,共24分)13.将方程化成一般形式是______________.14.如图,在△ABC中,P是AB边上的点,请补充一个条件,使△ACP∽△ABC,这个条件可以是:___(写出一个即可),15.已知关于的二次函数的图象如图所示,则关于的方程的根为__________16.如图,Rt△ABC中,∠ACB=90°,AC=BC=,若把Rt△ABC绕边AB所在直线旋转一周,则所得几何体的表面积为________(结果保留π).17.如图,AB为⊙O的直径,C,D是⊙O上两点,若∠ABC=50°,则∠D的度数为______.18.已知的半径为,,是的两条弦,,,,则弦和之间的距离是__________.三、解答题(共78分)19.(8分)解方程:x2+x﹣1=1.20.(8分)在等边中,点为上一点,连接,直线与分别相交于点,且.(1)如图(1),写出图中所有与相似的三角形,并选择其中的一对给予证明;(2)若直线向右平移到图(2)、图(3)的位置时,其他条件不变,(1)中的结论是否仍然成立?若成立请写出来(不证明),若不成立,请说明理由;(3)探究:如图(1),当满足什么条件时(其他条件不变),?请写出探究结果,并说明理由(说明:结论中不得含有未标识的字母).21.(8分)解不等式组,并把解集在数轴上表示出来:22.(10分)学校为奖励“汉字听写大赛”的优秀学生,派王老师到商店购买某种奖品,他看到如表所示的关于该奖品的销售信息,便用1400元买回了奖品,求王老师购买该奖品的件数.购买件数销售价格不超过30件单价40元超过30件每多买1件,购买的所有物品单价将降低0.5元,但单价不得低于30元23.(10分)二次函数图象过,,三点,点的坐标为,点的坐标为,点在轴正半轴上,且,求二次函数的表达式.24.(10分)如图,已知抛物线y=﹣x2+bx+c与x轴交于A、B两点,交y轴于点C,已知A(﹣1,0)对称轴是直线x=1.(1)求抛物线的解析式及点C的坐标;(2)动点M从点O出发,以每秒2个单位长度的速度向点B运动,过M作x轴的垂线交抛物线于点N,交线段BC于点Q.设运动时间为t(t>0)秒.①若AOC与BMN相似,请求出t的值;②BOQ能否为等腰三角形?若能,求出t的值.25.(12分)如图,是的直径,是弦,是弧的中点,过点作垂直于直线垂足为,交的延长线于点.求证:是的切线;若,求的半径.26.已知和是关于的一元二次方程的两个不同的实数根.(1)求的取值范围;(2)如果且为整数,求的值.
参考答案一、选择题(每题4分,共48分)1、A【解析】试题分析:因为y=的图象,在每个象限内,y的值随x值的增大而增大,所以k-1<0,k<1.故选A.考点:反比例函数的性质.2、C【分析】根据因式分解法,可得答案.【详解】解:,方程整理,得,x2-x=0
因式分解得,x(x-1)=0,
于是,得,x=0或x-1=0,
解得x1=0,x2=1,
故选:C.本题考查了解一元二次方程,因式分解法是解题关键.3、D【分析】根据方程没有实数根,则解得即可.【详解】由题意可知:△==9﹣4c<0,∴c>,故选:D.本题考查根的判别式,解题的关键是熟练运用根的判别式,本题属于基础题型.4、D【分析】根据中心对称图形的定义逐个判断即可.【详解】解:A、是中心对称图形,故本选项不符合题意;
B、是中心对称图形,故本选项不符合题意;
C、是中心对称图形,故本选项符合题意;
D、不是中心对称图形,故本选项符合题意;故选D.本题考查了对中心对称图形的定义,判断中心对称图形的关键是旋转180°后能够重合.能熟知中心对称图形的定义是解此题的关键.5、D【解析】分析:根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.详解:∵共6个数,大于3的有3个,∴P(大于3)=.故选D.点睛:本题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.6、B【分析】直接利用切线的性质得出∠OCD=90°,进而得出∠DOC=50°,进而得出答案.【详解】解:连接OC,∵DC是⊙O的切线,C为切点,∴∠OCD=90°,∵∠D=40°,∴∠DOC=50°,∵AO=CO,∴∠A=∠ACO,∴∠A=∠DOC=25°.
故选:B.此题主要考查了切线的性质,正确得出∠DOC=50°是解题关键.7、B【分析】连接OE、OD,由切线的性质可知OE⊥AC,OD⊥AB,由于O是BC的中点,从而可知OD是中位线,所以可知∠B=45°,从而可知半径r的值,最后利用弧长公式即可求出答案.【详解】连接OE、OD,设半径为r,∵⊙O分别与AB,AC相切于D,E两点,∴OE⊥AC,OD⊥AB,∵O是BC的中点,∴OD是中位线,∴OD=AE=AC,∴AC=2r,同理可知:AB=2r,∴AB=AC,∴∠B=45°,∵BC=2∴由勾股定理可知AB=2,∴r=1,∴==故选B此题考查切线的性质,弧长的计算,解题关键在于作辅助线8、A【分析】根据把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心进行分析即可.【详解】解:A、不是中心对称图形,故此选项正确;B、是中心对称图形,故此选项错误;C、是中心对称图形,故此选项错误;D、是中心对称图形,故此选项错误;故选A.此题主要考查了中心对称图形的定义,判断中心对称图形是要寻找对称中心,旋转180度后与原图重合.9、D【分析】先求出AC,再根据正切的定义求解即可.【详解】设BC=x,则AB=3x,由勾股定理得,AC=,tanB===,故选D.考点:1.锐角三角函数的定义;2.勾股定理.10、B【解析】先把(x+m)1=n展开,化为一元二次方程的一般形式,再分别使其与方程x1-4x-3=0的一次项系数、二次项系数及常数项分别相等即可.【详解】解:∵(x+m)1=n可化为:x1+1mx+m1-n=0,∴,解得:故选:B.此题比较简单,解答此题的关键是将一元二次方程化为一般形式,再根据题意列出方程组即可.11、B【分析】运用旋转变换的性质得到AD=AB,进而得到△ABD为等边三角形,求出BD即可解决问题.【详解】解:如图,由题意得:AD=AB,且∠B=60°,∴△ABD为等边三角形,∴BD=AB=2,∴CD=3.6﹣2.2=1.1.故选:B.该题主要考查了旋转变换的性质、等边三角形的判定等几何知识点及其应用问题;牢固掌握旋转变换的性质是解题的关键.12、A【分析】A.根据等腰三角形的性质和角平分线的性质,利用等量代换求证∠CAD=∠ADO即可;
B.过点E作EF⊥AC,根据角平分线上的点到角的两边的距离相等可得OE=EF,再根据直角三角形斜边大于直角边可证;
C.两三角形中,只有一个公共角的度数相等,其它两角不相等,所以不能证明③△ODE∽△ADO;
D.根据角平分线的性质得出∠CAD=∠BAD,根据在同圆或等圆中,相等的圆周角所对的弦相等,可得CD=BD,又因为CD+BD>BC,又由AC=BC可得AC<2CD,从而可判断D错误.【详解】解:解:A.∵AB是半圆直径,
∴AO=OD,
∴∠OAD=∠ADO,
∵AD平分∠CAB交弧BC于点D,
∴∠CAD=∠DAO=∠CAB,
∴∠CAD=∠ADO,
∴AC∥OD,
∴A正确.
B.如图,过点E作EF⊥AC,
∵OC⊥AB,AD平分∠CAB交弧BC于点D,
∴OE=EF,
在Rt△EFC中,CE>EF,
∴CE>OE,
∴B错误.
C.∵在△ODE和△ADO中,只有∠ADO=∠EDO,
∵∠COD=2∠CAD=2∠OAD,
∴∠DOE≠∠DAO,
∴不能证明△ODE和△ADO相似,
∴C错误;D.∵AD平分∠CAB交于点D,∴∠CAD=∠BAD.∴CD=BD∴BC<CD+BD=2CD,∵半径OC⊥AB于O,∴AC=BC,∴AC<2CD,∴D错误.故选A.本题主要考查相似三角形的判定与性质,圆心角、弧、弦的关系,圆周角定理,等腰三角形的性质,三角形内角和定理等知识点的灵活运用,此题步骤繁琐,但相对而言,难易程度适中,很适合学生的训练.二、填空题(每题4分,共24分)13、【分析】先将括号乘开,再进行合并即可得出答案.【详解】x2-6x+4+x+1=0,.故答案为:.本题考查了一次二次方程的化简,注意变号是解决本题的关键.14、∠ACP=∠B(或).【分析】由于△ACP与△ABC有一个公共角,所以可利用两组对应边的比相等且夹角对应相等的两个三角形相似或有两组角对应相等的两个三角形相似进行添加条件.【详解】解:∵∠PAC=∠CAB,∴当∠ACP=∠B时,△ACP∽△ABC;当时,△ACP∽△ABC.故答案为:∠ACP=∠B(或).本题考查了相似三角形的判定:两组对应边的比相等且夹角对应相等的两个三角形相似:有两组角对应相等的两个三角形相似.15、0或-1【分析】求关于的方程的根,其实就是求在二次函数中,当y=4时x的值,据此可解.【详解】解:∵抛物线与x轴的交点为(-4,0),(1,0),∴抛物线的对称轴是直线x=-1.5,∴抛物线与y轴的交点为(0,4)关于对称轴的对称点坐标是(-1,4),
∴当x=0或-1时,y=4,即=4,即=0∴关于x的方程ax2+bx=0的根是x1=0,x2=-1.故答案为:x1=0,x2=-1.本题考查的是二次函数与一元二次方程的关系,能根据题意利用数形结合把求出方程的解的问题转化为二次函数的问题是解答此题的关键.16、【分析】过点C作CD⊥AB于点D,在Rt△ABC中,求出AB长,继而求得CD长,继而根据扇形面积公式进行求解即可.【详解】过点C作CD⊥AB于点D,Rt△ABC中,∠ACB=90°,AC=BC,∴AB=AC=4,∴CD=2,以CD为半径的圆的周长是:4π.故直线旋转一周则所得的几何体得表面积是:2××4π×=.故答案为.本题考查了圆锥的计算,正确求出旋转后圆锥的底面圆半径是解题的关键.17、40°.【解析】根据直径所对的圆心角是直角,然后根据直角三角形的两锐角互余求得∠A的度数,最后根据同弧所对的圆周角相等即可求解.【详解】∵AB是圆的直径,∴∠ACB=90°,∴∠A=90°-∠ABC=90°-50°=40°.∴∠D=∠A=40°.故答案为:40°.本题考查了圆周角定理,直径所对的圆周角是直角以及同弧所对的圆周角相等,理解定理是关键.18、2或1【解析】分析:分两种情况进行讨论:①弦AB和CD在圆心同侧;②弦AB和CD在圆心异侧;作出半径和弦心距,利用勾股定理和垂径定理求解即可.详解:①当弦AB和CD在圆心同侧时,如图,∵AB=16cm,CD=12cm,∴AE=8cm,CF=6cm,∵OA=OC=10cm,∴EO=6cm,OF=8cm,∴EF=OF-OE=2cm;②当弦AB和CD在圆心异侧时,如图,∵AB=16cm,CD=12cm,∴AF=8cm,CE=6cm,∵OA=OC=10cm,∴OF=6cm,OE=8cm,∴EF=OF+OE=1cm.∴AB与CD之间的距离为1cm或2cm.故答案为2或1.点睛:本题考查了勾股定理和垂径定理的应用.此题难度适中,解题的关键是注意掌握数形结合思想与分类讨论思想的应用,小心别漏解.三、解答题(共78分)19、x1=,x2=.【分析】直接用公式法求解即可,首先确定a,b,c,再判断方程的解是否存在,若存在代入公式即可求解.【详解】解:a=1,b=1,c=﹣1,b2﹣4ac=1+4=5>1,x=;∴x1=,x2=.此题主要考查一元二次方程的解法,主要有:因式分解法、公式法、配方法、直接开平方法等,要针对不同的题型选用合适的方法.20、(1)△BPF∽△EBF,△BPF∽△BCD;(2)均成立,分别为△BPF∽△EBF,△BPF∽△BCD,(3)当BD平分∠ABC时,PF=PE.【分析】(1)由两角对应相等的三角形是相似三角形找出△BPF∽△EBF,△BPF∽△BCD,这两组三角形都可由一个公共角和一组60°角来证明;(2)成立,证法同(1);(3)先看PF=PE能得出什么结论,根据△BPF∽△EBF,可得BF2=PF∙PE=3PF2,因此,因为,可得∠PFB=90°,则∠PBF=30°,由此可得当BD平分∠ABC时,PF=PE.【详解】解:(1)△BPF∽△EBF,△BPF∽△BCD,证明如下:∵△ABC是等边三角形,∴∠ABC=∠ACB=∠BAC=60°,∵∠BPF=60°∴∠BPF=∠EBF=60°,∵∠BFP=∠BFE,∴△BPF∽△EBF;∵∠BPF=∠BCD=60°,∠PBF=∠CBD,∴△BPF∽△BCD;(2)均成立,分别为△BPF∽△EBF,△BPF∽△BCD,证明如下:如图(2)∵∠BPF=∠EBF=60°,∠BFP=∠BFE,∴△BPF∽△EBF;∵∠BPF=∠BCD=60°,∠PBF=∠CBD,∴△BPF∽△BCD.如图(3),同理可证△BPF∽△EBF,△BPF∽△BCD;(3)当BD平分∠ABC时,PF=PE,理由:∵BD平分∠ABC,∴∠ABP=∠PBF=30°.∵∠BPF=60°,∴∠BFP=90°.∴PF=PB又∵∠BEF=60°−30°=30°=∠ABP,∴PB=PE.∴PF=PE.本题主要考查了等边三角形的性质、相似三角形的判定与性质,熟练掌握相似三角形的判断是解题的关键.21、【分析】分别求出各不等式的解,然后画出数轴,数轴上相交的点的集合就是该不等式的解集.若没有交点,则不等式无解【详解】解:由不等式①得:由不等式②得:∴不等式组的解集:本题考查了解一元一次不等式组,熟练掌握解题步骤是解本题的关键.22、王老师购买该奖品的件数为40件.【解析】试题分析:根据题意首先表示出每件商品的价格,进而得出购买商品的总钱数,进而得出等式求出答案.试题解析:∵30×40=1200<1400,∴奖品数超过了30件,设总数为x件,则每件商品的价格为:[40﹣(x﹣30)×0.5]元,根据题意可得:x[40﹣(x﹣30)×0.5]=1400,解得:x1=40,x2=70,∵x=70时,40﹣(70﹣30)×0.5=20<30,∴x=70不合题意舍去,答:王老师购买该奖品的件数为40件.考点:一元二次方程的应用.23、【分析】根据题目所给信息可以得出点C的坐标为(0,5),把A、B、C三点坐标代入可得抛物线解析式.【详解】解∵点的坐标为点的坐标为∴又∵点在轴正半轴上∴点的坐标为设二次函数关系式为把,代入得,∴本题考查的知识点是用待定系数法求二次函数解析式,根据题目信息得出点C的坐标是解此题的关键.24、(1);;(2)①t=1;②当秒或秒时,△BOQ为等腰三角形.【分析】(1)将A、B点的坐标代入y=﹣x2+bx+c中,即可求解;(2)①△AOC与△BMN相似,则或,即可求解;②分OQ=BQ,BO=BQ,OQ=OB三种情况,分别求解即可;【详解】(1)∵A(﹣1,0),函数对称轴是直线x=1,∴,把A、B两点代入y=﹣x2+bx+c中,得:,解得,∴抛物线的解析式为,∴C点的坐标为.(3)①如下图,,△AOC与△BMN相似,则或,即或,解得或或3或1(舍去,,3),故t=1.②∵,轴,∴,∵△BOQ为等腰三角形,∴分三种情况讨论:第一种:当OQ=BQ时,∵,∴OM=MB,∴,∴;第二种:当BO=BQ时,在Rt△BMQ中,∵,∴,即,∴;第三种:当OQ=OB时,则点Q、C重合,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2023年制造业安全生产技术应用报告
- 2025年自智能农场建设可行性研究报告
- 2025年城市智慧社区建设项目可行性研究报告
- 2025年海洋塑料清理项目可行性研究报告
- 2023年科学实验报告写作规范与范文
- 2025年大学《老挝语》专业题库- 老挝语音系演变调查研究总结报告
- 2025年温州医科大学附属第一医院招聘特殊专业技术岗位19人备考考试题库附答案解析
- 楼盘顾问咨询优惠活动方案
- 营销方案饺子店
- 专卖店铺设计咨询方案
- 《胆管手术术后胆瘘》课件
- 《动物营养学》全套教学课件
- 职业病化学中毒考试试题及答案
- 2023-2024学年重庆市潼南区四年级(上)期末数学试卷
- 膝关节损伤术后康复运动康复方案设计
- 医保法律法规培训
- 新版苏教版三年级数学上册《间隔排列》教案
- 物流配送责任免除协议条款
- MRI常见伪影简介课件
- 安全工器具的检查及使用培训
- 中国黄酒酿造技术单选题100道及答案
评论
0/150
提交评论