版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2026届黑龙江大庆市三站中学九年级数学第一学期期末统考模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每小题3分,共30分)1.下列图形:任取一个是中心对称图形的概率是()A. B. C. D.12.已知x1,x2是一元二次方程x2+(2m+1)x+m2﹣1=0的两不相等的实数根,且,则m的值是()A.或3 B.﹣3 C. D.3.下列哪个方程是一元二次方程()A.2x+y=1 B.x2+1=2xy C.x2+=3 D.x2=2x﹣34.正比例函数y=2x和反比例函数的一个交点为(1,2),则另一个交点为()A.(﹣1,﹣2) B.(﹣2,﹣1) C.(1,2) D.(2,1)5.如图,已知,,,的长为()A.4 B.6 C.8 D.106.如图,点从菱形的顶点出发,沿以的速度匀速运动到点,下图是点运动时,的面积随时间变化的关系图象是()A. B.C. D.7.关于反比例函数图象,下列说法正确的是()A.必经过点 B.两个分支分布在第一、三象限C.两个分支关于轴成轴对称 D.两个分支关于原点成中心对称8.在Rt△ABC中,∠C=90°,AB=5,BC=3,则tanA的值是()A. B. C. D.9.用半径为3cm,圆心角是120°的扇形围成一个圆锥的侧面,则这个圆锥的底面半径为()A. B.1.5cm C. D.1cm10.若,则的值是()A.1 B.2 C.3 D.4二、填空题(每小题3分,共24分)11.不等式>4﹣x的解集为_____.12.方程的解是.13.在一个不透明的盒子中装有12个白球,若干个黄球,它们除颜色不同外,其余均相同,若从中随机摸出一个球是白球的概率是,则黄球个数为__________.14.若(m-1)+2mx-1=0是关于x的一元二次方程,则m的值是______.15.如图,是⊙的直径,是⊙上一点,的平分线交⊙于,且,则的长为_________.16.若两个相似三角形的面积之比为1:4,则它们对应角的角平分线之比为___.17.一个扇形的圆心角是120°.它的半径是3cm.则扇形的弧长为__________cm.18.如图,在△ABC中,AB=AC,∠A=120°,BC=4,⊙A与BC相切于点D,且交AB,AC于M,N两点,则图中阴影部分的面积是_____(保留π).三、解答题(共66分)19.(10分)如图,于点,为等腰直角三角形,,当绕点旋转时,记.(1)过点作交射线于点,作射线交射线于点.①依题意补全图形,求的度数;②当时,求的长.(2)若上存在一点,且,作射线交射线于点,直接写出长度的最大值.20.(6分)我们不妨约定:如图①,若点D在△ABC的边AB上,且满足∠ACD=∠B(或∠BCD=∠A),则称满足这样条件的点为△ABC边AB上的“理想点”.(1)如图①,若点D是△ABC的边AB的中点,AC=,AB=4.试判断点D是不是△ABC边AB上的“理想点”,并说明理由.(2)如图②,在⊙O中,AB为直径,且AB=5,AC=4.若点D是△ABC边AB上的“理想点”,求CD的长.(3)如图③,已知平面直角坐标系中,点A(0,2),B(0,-3),C为x轴正半轴上一点,且满足∠ACB=45°,在y轴上是否存在一点D,使点A是B,C,D三点围成的三角形的“理想点”,若存在,请求出点D的坐标;若不存在,请说明理由.21.(6分)如图,在平面直角坐标系中,△ABC的三个顶点坐标分别为A(1,4),B(4,2),C(3,5)(每个方格的边长均为1个单位长度).(1)请画出将△ABC向下平移5个单位后得到的△A1B1C1;(2)将△ABC绕点O逆时针旋转90°,画出旋转后得到的△A2B2C2,并直接写出点B旋转到点B2所经过的路径长.22.(8分)用适当的方法解下列方程:(1)(x﹣2)2﹣16=1(2)5x2+2x﹣1=1.23.(8分)课堂上同学们借助两个直角三角形纸板进行探究,直角三角形纸板如图所示,分别为Rt△ABC和Rt△DEF,其中∠A=∠D=90°,AC=DE=2cm.当边AC与DE重合,且边AB和DF在同一条直线上时:(1)在下边的图形中,画出所有符合题意的图形;(2)求BF的长.24.(8分)如图,已知矩形ABCD的周长为12,E,F,G,H为矩形ABCD的各边中点,若AB=x,四边形EFGH的面积为y.(1)请直接写出y与x之间的函数关系式;(2)根据(1)中的函数关系式,计算当x为何值时,y最大,并求出最大值.25.(10分)如图,在正方形ABCD中,点M是BC边上的任一点,连接AM并将线段AM绕M顺时针旋转90°得到线段MN,在CD边上取点P使CP=BM,连接NP,BP.(1)求证:四边形BMNP是平行四边形;(2)线段MN与CD交于点Q,连接AQ,若△MCQ∽△AMQ,则BM与MC存在怎样的数量关系?请说明理由.26.(10分)已知关于x的一元二次方程kx2﹣4x+2=0有两个不相等的实数根.(1)求实数k的取值范围;(2)写出满足条件的k的最大整数值,并求此时方程的根.
参考答案一、选择题(每小题3分,共30分)1、C【解析】本题考查概率的计算和中心对称图形的概念,根据中心对称图形的概念可以判定①③④是中心对称图形,4个图形任取一个是中心对称的图形的概率为P=,因此本题正确选项是C.2、C【分析】先利用判别式的意义得到m>-,再根据根与系数的关系的x1+x2=-(2m+1),x1x2=m2-1,则(x1+x2)2-x1x2-17=0,所以(2m+1)2-(m2-1)-17=0,然后解关于m的方程,最后确定满足条件的m的值.【详解】解:根据题意得△=(2m+1)2﹣4(m2﹣1)>0,解得m>﹣,根据根与系数的关系的x1+x2=﹣(2m+1),x1x2=m2﹣1,∵,∴(x1+x2)2﹣x1x2﹣17=0,∴(2m+1)2﹣(m2﹣1)﹣17=0,整理得3m2+4m﹣15=0,解得m1=,m2=﹣3,∵m>﹣,∴m的值为.故选:C.本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=-,x1x2=.也考查了根的判别式.3、D【分析】方程的两边都是整式,只含有一个未知数,并且整理后未知数的最高次数都是2,像这样的方程叫做一元二次方程,根据定义判断即可.【详解】A.2x+y=1是二元一次方程,故不正确;B.x2+1=2xy是二元二次方程,故不正确;C.x2+=3是分式方程,故不正确;D.x2=2x-3是一元二次方程,故正确;故选:D4、A【详解】∵正比例函数y=2x和反比例函数y=的一个交点为(1,2),∴另一个交点与点(1,2)关于原点对称,∴另一个交点是(-1,-2).故选A.5、D【分析】根据平行线分线段成比例得到,即,可计算出.【详解】解:,即,解得.故选D本题主要考查平行线段分线段成比例定理,熟练掌握并灵活运用定理是解题的关系.6、A【分析】运用动点函数进行分段分析,当点P在AD上和在BD上时,结合图象得出符合要求的解析式.【详解】①当点P在AD上时,此时BC是定值,BC边的高是定值,则△PBC的面积y是定值;
②当点P在BD上时,此时BC是定值,BC边的高与运动时间x成正比例的关系,则△PBC的面积y与运动时间x是一次函数,并且△PBC的面积y与运动时间x之间是减函数,y≥1.
所以只有A符合要求.
故选:A.此题主要考查了动点函数的应用,注意将函数分段分析得出解析式是解决问题的关键,有一定难度.7、D【分析】把(2,1)代入即可判断A,根据反比例函数的性质即可判断B、C、D.【详解】A.当x=2时,y=-1≠1,故不正确;B.∵-2<0,∴两个分支分布在第二、四象限,故不正确;C.两个分支不关于轴成轴对称,关于原点成中心对称,故不正确;D.两个分支关于原点成中心对称,正确;故选D.本题考查了反比例函数的图象与性质,反比例函数(k是常数,k≠0)的图象是双曲线,当k>0,反比例函数图象的两个分支在第一、三象限;当k<0,反比例函数图象的两个分支在第二、四象限.反比例函数图象的两个分支关于原点成中心对称.8、A【解析】由勾股定理,得AC=,由正切函数的定义,得tanA=,故选A.9、D【详解】解:设此圆锥的底面半径为r,根据圆锥的侧面展开图扇形的弧长等于圆锥底面周长可得,,解得:r=1.故选D.10、B【分析】根据比例的性质,可用x表示y、z,根据分式的性质,可得答案.【详解】设=k,则x=2k,y=7k,z=5k代入原式原式==故答案为:2.本题考查了比例的性质,解题的关键是利用比例的性质,化简求值.二、填空题(每小题3分,共24分)11、x>1.【分析】按照去分母、去括号、移项、合并同类项、系数化为1的步骤求解即可.【详解】解:去分母得:x﹣1>8﹣2x,移项合并得:3x>12,解得:x>1,故答案为:x>1本题考查了一元一次不等式的解法,熟练掌握解一元一次不等式的步骤是解答本题的关键.12、【解析】解:,.13、24【分析】根据概率公式,求出白球和黄球总数,再减去白球的个数,即可求解.【详解】12÷=36(个),36-12=24(个),答:黄球个数为24个.故答案是:24.本题主要考查概率公式,掌握概率公式及其变形公式,是解题的关键.14、-2【分析】根据一元二次方程的定义:未知数的最高次数是2;二次项系数不为1.由这两个条件得到相应的关系式,再求解即可.【详解】解:由题意,得m(m+2)-1=2且m-1≠1,解得m=-2,故答案为-2.本题利用了一元二次方程的概念.只有一个未知数且未知数最高次数为2的整式方程叫做一元二次方程,一般形式是ax2+bx+c=1(且a≠1).特别要注意a≠1的条件.15、【分析】连接OD,由AB是直径,得∠ACB=90°,由角平分线的性质和圆周角定理,得到△AOD是等腰直角三角形,根据勾股定理,即可求出AD的长度.【详解】解:连接OD,如图,∵是⊙的直径,∴∠ACB=90°,AO=DO=,∵CD平分∠ACB,∴∠ACD=45°,∴∠AOD=90°,∴△AOD是等腰直角三角形,∴;故答案为:.本题考查了圆周角定理,直径所对的圆周角是直角,勾股定理,以及等腰直角三角形的性质,解题的关键是掌握圆周角定理进行解题.16、1:1【分析】根据相似三角形的性质进行分析即可得到答案.【详解】解:∵两个相似三角形的面积比为1:4,∴它们对应角的角平分线之比为1:=1:1,故答案为:1:1.本题考查对相似三角形性质的理解.(1)相似三角形周长的比等于相似比.(1)相似三角形面积的比等于相似比的平方.(3)相似三角形对应高的比、对应中线的比、对应角平分线的比都等于相似比.17、2π【解析】分析:根据弧长公式可得结论.详解:根据题意,扇形的弧长为=2π,故答案为:2π点睛:本题主要考查弧长的计算,熟练掌握弧长公式是解题的关键.18、4.【分析】连接AD,分别求出△ABC和扇形AMN的面积,相减即可得出答案.【详解】解:连接AD,∵⊙A与BC相切于点D,∴AD⊥BC,∵AB=AC,∠A=120°,∴∠ABD=∠ACD=30°,BD=CD=,∴AB=2AD,由勾股定理知BD2+AD2=AB2,即+AD2=(2AD)2解得AD=2,∴△ABC的面积=,扇形MAN得面积=,∴阴影部分的面积=.故答案为:.本题考查的是圆中求阴影部分的面积,解题关键在于知道阴影部分面积等于三角形ABC的面积减去扇形AMN的面积,要求牢记三角形面积和扇形面积的计算公式.三、解答题(共66分)19、(1)①见解析,45°②7;(2)见解析,【分析】(1)①作于点H,交的延长线于点,证明∆AHO≌∆AGB,即可求得∠ODC的度数;②延长交于点,利用条件可求得AK、OK的长度,于是可求OD的长;(2)分析可知,点B在以O为圆心,OB为半径的圆上运动(个圆),所以当PB是圆O的切线时,PQ的值最大,据此可解.【详解】解:(1)①补全图形如图所示,过点作于点H,交的延长线于点,∵,,,∴∠AGB=∠AHO=∠C=,∴∠GAH=,∴∠OAH+∠HAB=∠GAB+∠HAB=,∴∠OAH=∠GAB,四边形为矩形,∵为等腰直角三角形,∴OA=AB,∴∆AHO≌∆AGB,∴AH=AG,∴四边形为正方形,∴∠OCD=45°,∴∠ODC=45°;②延长交于点,∵,OA=5,∴AK=4,∴OK=3,∵∠ODC=45°,∴DK=AK=4∴;(2)如图,∵绕点旋转,∴点B在以O为圆心,OB为半径的圆上运动(个圆),∴当PB是圆O的切线时,PQ的值最大,∵∴∴∠OPB=45°,∴OQ=OP=10,∴.∴长度的最大值是.本题考查了与旋转有关的计算及圆的性质,作辅助线构造全等三角形、分析出点的运动轨迹是解题关键.20、(1)是,理由见解析;(2);(3)D(0,42)或D(0,6)【分析】(1)依据边长AC=,AB=4,D是边AB的中点,得到AC2=,可得到两个三角形相似,从而得到∠ACD=∠B;(2)由点D是△ABC的“理想点”,得到∠ACD=∠B或∠BCD=∠A,分两种情况证明均得到CD⊥AB,再根据面积法求出CD的长;(3)使点A是B,C,D三点围成的三角形的“理想点”,应分两种情况讨论,利用三角形相似分别求出点D的坐标即可.【详解】(1)D是△ABC边AB上的“理想点”,理由:∵AB=4,点D是△ABC的边AB的中点,∴AD=2,∵AC2=8,,∴AC2=,又∵∠A=∠A,∴△ADC∽△ACB,∴∠ACD=∠B,∴D是△ABC边AB上的“理想点”.(2)如图②,∵点D是△ABC的“理想点”,∴∠ACD=∠B或∠BCD=∠A,当∠ACD=∠B时,∵∠ACD+∠BCD=90,∴∠BCD+∠B=90,∴∠CDB=90,当∠BCD=∠A时,同理可得CD⊥AB,在Rt△ABC中,∵∠ACB=90,AB=5,AC=4,∴BC==3,∵,∴,∴.(3)如图③,存在.过点A作MA⊥AC交CB的延长线于点M,∵∠MAC=∠AOC=90,∠ACM=45,∴∠AMC=∠ACM=45,∴AM=AC,∵∠MAH+∠CAO=90,∠CAO+∠ACO=90,∴∠MAH=∠ACO,∴△AHM≌△COA∴MH=OA,OC=AH,设C(a,0),∵A(0,2),B(0,-3),∴OA=MH=2,OB=3,AB=5,OC=AH=a,BH=a-5,∵MH∥OC,∴,∴,解得a=6或a=-1(舍去),经检验a=6是原分式方程的解,∴C(6,0),OC=6.①当∠D1CA=∠ABC时,点A是△BCD1的“理想点”,设D1(0,m),∵∠D1CA=∠ABC,∠CD1A=∠CD1B,∴△D1AC∽△D1CB,∴,∴,解得m=42,∴D1(0,42);②当∠BCA=∠CD2B时,点A是△BCD2“理想点”,可知:∠CD2O=45,∴OD2=OC=6,∴D2(0,6).综上,满足条件的点D的坐标为D(0,42)或D(0,6).此题考查相似三角形的判定及性质,通过证明三角形相似得到点是三角形某条边上的“理想点”,通过点是三角形的“理想点”,从而证明出三角形相似,由此得到点的坐标,相互反推的思想的利用,注意后者需分情况进行讨论.21、(1)图见解析;(2)图见解析;路径长π.【分析】(1)利用点平移的坐标特征写出A1、B1、C1的坐标,然后描点即可得到△A1B1C1为所作;(2)利用网格特定和旋转的性质画出A、B、C的对应点A2、B2、C2,从而得到△A2B2C2,然后计算出OB的长后利用弧长公式计算点B旋转到点B2所经过的路径长.【详解】解:(1)如图,△A1B1C1为所作;(2)如图,△A2B2C2为所作,OB==2点B旋转到点B2所经过的路径长==π.本题考查了作图-旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.22、(1)x1=-2,x2=6;(2)x1=,x2=【分析】(1)先移项,两边再开方,即可得出两个一元一次方程,求出方程的解即可;(2)求出b2-4ac的值,代入公式求出即可.【详解】(1)(x-2)2-16=1,(x-2)2=16,两边开方得:x-2=±4,解得:x1=-2,x2=6;(2)5x2+2x-1=1,b2-4ac=22+4×5×1=24,x=,∴x1=,x2=本题考查了解一元二次方程的应用,主要考查了学生的计算能力,题目是一道比较好的题目,难度适中.23、(1)补全图形见解析;(2)BF=(+2)cm或BF=(-2)cm.【分析】(1)分两种情况:①△DEF在△ABC外部,②△DEF在△ABC内部进行作图即可;(2)根据(1)中两种情况分别求解即可.【详解】(1)补全图形如图:情况Ⅰ:情况Ⅱ:(2)情况Ⅰ:解:∵在Rt△ACF中,∠F=∠ACF=45°∴AF=AC=2cm.∵在Rt△ACB中,∠B=30°,∴BC=4,AB=.∴BF=(+2)cm.情况Ⅱ:解:∵在Rt△ACF中,∠F=∠ACF=45°∴AF=AC=2cm.∵在Rt△ACB中,∠B=30°,∴BC=4,AB=.∴BF=(-2)cm.本题主要考查了勾股定理与解直角三角形的综合运用,熟练掌握相关概念是解题关键.24、(1)y=-x2+3x;(2)当x=3时,y有最大值,为4.5.【解析】分析:(1)由矩形的周长为12,AB=x,结合矩形的性质可得BC=6-x,然后由E,F,G,H为矩形ABCD的各边中点可得四边形EFGH的面积是矩形面积的一半,从而列出函数关系式;(2)由关系式为二次函数以及二次项系数小于0可得四边形EFGH的面积有最大值,然后利用配方法将抛物线的解析式写成顶点式,从而得到x取什么值时,y取得最大值,以及最大值是多少.详解:(1)∵矩形ABCD的周长为12,AB=x,∴BC=×12-x=6-x.∵E,F,G,H为矩形ABCD的各边中点,∴y=x(6-x)=-x2+3x,即y=-x2+3x.(2)y=-x2+3x=-(x-3)2+4.5,∵a=-<0,∴y有最大值,当x=3时,y有最大值,为4.5.点睛:本题是一道有关二次函数应用的题目,解题的关键是依据矩形的性质结合已知列出二次函数关系式,然后利用二次函数的最值解决问题.25、(1)证明见解析;(2)BM=MC.理由
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- GB/T 46348-2025信息技术学习、教育和培训移动学习终端功能要求
- 印制宣传资料合同范本
- 合同工退休转返聘协议
- 兼职焊工劳动合同范本
- 劳务资质代理合同范本
- 养殖设备租赁合同范本
- 协议拆船合同模板模板
- 新能源汽车产业发展现状调查
- 企业购买葡萄合同范本
- 合同项目工期协议范本
- 2025年度护理三基考试题库及答案
- 公路工程施工安全检查表
- 2025年松阳县机关事业单位公开选调工作人员34人考试参考试题及答案解析
- 2025年教师编制考试面试题库及答案
- 幼儿园家长工作沟通技巧培训教材
- 二类医疗器械零售经营备案质量管理制度
- 荣县2025年度公开招聘社区专职工作人员(8人)笔试备考试题及答案解析
- 黑龙江省 2025 年专升本英语全真模拟卷
- 浙江南海实验高中2025年秋9月月考高一数学试题+答案(9月29日)
- 司法鉴定人岗前考试题及答案解析
- 地面保洁施工方案
评论
0/150
提交评论