




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2026届江苏省兴化市顾庄区四校数学九年级第一学期期末学业水平测试模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.如图,点D在以AC为直径的⊙O上,如果∠BDC=20°,那么∠ACB的度数为()A.20° B.40° C.60° D.70°2.点C为线段AB的黄金分割点,且AC>BC,下列说法正确的有()①AC=AB,②AC=AB,③AB:AC=AC:BC,④AC≈0.618ABA.1个 B.2个 C.3个 D.4个3.对于反比例函数,下列说法不正确的是()A.图像分布在第一、三象限 B.当时,随的增大而减小C.图像经过点 D.若点都在图像上,且,则4.如图,在△ABC中,M,N分别是边AB,AC的中点,则△AMN的面积与四边形MBCN的面积比为A. B. C. D.5.已知点A(,),B(1,),C(2,)是函数图象上的三点,则,,的大小关系是()A.<< B.<< C.<< D.无法确定6.已知,在中,,则边的长度为()A. B. C. D.7.如图,矩形草坪ABCD中,AD=10m,AB=m.现需要修一条由两个扇环构成的便道HEFG,扇环的圆心分别是B,D.若便道的宽为1m,则这条便道的面积大约是()(精确到0.1m2)A.9.5m2 B.10.0m2 C.10.5m2 D.11.0m28.如图,将△AOB绕着点O顺时针旋转,得到△COD,若∠AOB=40°,∠BOC=30°,则旋转角度是()A.10° B.30° C.40° D.70°9.如图,⊙O的半径为6,直径CD过弦EF的中点G,若∠EOD=60°,则弦CF的长等于()A.6 B.6 C.3 D.910.一个不透明的袋子中装有仅颜色不同的1个红球和3个绿球,从袋子中随机摸出一个小球,记下颜色后,不放回再随机摸出一个小球,则两次摸出的小球恰好是一个红球和一个绿球的概率为()A. B. C. D.11.已知关于轴对称点为,则点的坐标为()A. B. C. D.12.如图,一同学在湖边看到一棵树,他目测出自己与树的距离为20m,树的顶端在水中的倒影距自己5m远,该同学的身高为1.7m,则树高为().A.3.4m B.4.7m C.5.1m D.6.8m二、填空题(每题4分,共24分)13.若点在反比例函数的图像上,则______.14.将抛物线向左平移2个单位得到新的抛物线,则新抛物线的解析式是______.15.如图,△ABC中,DE∥BC,,△ADE的面积为8,则△ABC的面积为______16.如图,在△ABC中,AB=AC,∠A=120°,BC=4,⊙A与BC相切于点D,且交AB,AC于M,N两点,则图中阴影部分的面积是_____(保留π).17.如图,某试验小组要在长50米,宽39米的矩形试验田中间开辟一横一纵两条等宽的小道,使剩余的面积是1800平方米,求小道的宽.若设小道的宽为米,则所列出的方程是_______(只列方程,不求解)18.如图,分别以等边三角形的每个顶点为圆心、以边长为半径,在另两个顶点间作一段圆弧,三段圆弧围成的曲边三角形称为勒洛三角形.若等边三角形的边长为a,则勒洛三角形的周长为_____.三、解答题(共78分)19.(8分)将一块面积为的矩形菜地的长减少,它就变成了正方形,求原菜地的长.20.(8分)我市某蔬菜生产基地在气温较低时,用装有恒温系统的大棚栽培一种在自然光照且温度为的条件下生长最快的新品种.下图是某天恒温系统从开启到关闭及关闭后,大棚内温度y(°C)随时间x(小时)变化的函数图象,其中段是双曲线的一部分.请根据图中信息解答下列问题:(1)恒温系统在这天保持大棚内温度的时间有________小时;(2)当时,大棚内的温度约为多少度?21.(8分)如图,在Rt△ABC中,∠ABC=90º,D是AC的中点,⊙O经过A、B、D三点,CB的延长线交⊙O于点E.(1)求证:AE=CE.(2)若EF与⊙O相切于点E,交AC的延长线于点F,且CD=CF=2cm,求⊙O的直径.(3)若EF与⊙O相切于点E,点C在线段FD上,且CF:CD=2:1,求sin∠CAB.22.(10分)综合与探究:如图,将抛物线向右平移个单位长度,再向下平移个单位长度后,得到的抛物线,平移后的抛物线与轴分别交于,两点,与轴交于点.抛物线的对称轴与抛物线交于点.(1)请你直接写出抛物线的解析式;(写出顶点式即可)(2)求出,,三点的坐标;(3)在轴上存在一点,使的值最小,求点的坐标.23.(10分)如图,在□ABCD中,AB=5,BC=8.(1)作∠ABC的角平分线交线段AD于点E(用尺规作图,保留作图痕迹,不要求写作法):(2)在(1)的条件下,求ED的长.24.(10分)如图,△ABC中,AB=AC=2,∠BAC=120°,D为BC边上的点,将DA绕D点逆时针旋转120°得到DE.(1)如图1,若AD=DC,则BE的长为,BE2+CD2与AD2的数量关系为;(2)如图2,点D为BC边山任意一点,线段BE、CD、AD是否依然满足(1)中的关系,试证明;(3)M为线段BC上的点,BM=1,经过B、E、D三点的圆最小时,记D点为D1,当D点从D1处运动到M处时,E点经过的路径长为.25.(12分)如图,已知一次函数分别交x、y轴于A、B两点,抛物线y=﹣x2+bx+c经过A、B两点,与x轴的另一交点为C.(1)求b、c的值及点C的坐标;(2)动点P从点O出发,以每秒1个单位长度的速度向点A运动,过P作x轴的垂线交抛物线于点D,交线段AB于点E.设运动时间为t(t>0)秒.①当t为何值时,线段DE长度最大,最大值是多少?(如图1)②过点D作DF⊥AB,垂足为F,连结BD,若△BOC与△BDF相似,求t的值.(如图2)26.如图,四边形ABCD中,AC平分∠DAB,∠ADC=∠ACB=90°,E为AB的中点,(1)求证:AC2=AB•AD.(2)求证:CE∥AD;(3)若AD=4,AB=6,求AF的值.
参考答案一、选择题(每题4分,共48分)1、D【分析】由AC为⊙O的直径,可得∠ABC=90°,根据圆周角定理即可求得答案.【详解】∵AC为⊙O的直径,∴∠ABC=90°,∵∠BAC=∠BDC=20°,∴.故选:D.本题考查了圆周角定理,正确理解直径所对的圆周角是直角,同圆或等圆中,同弧或等弧所对的圆周角相等是解题的关键.2、C【解析】根据黄金分割的概念和黄金比值进行解答即可得.【详解】∵点C数线段AB的黄金分割点,且AC>BC,∴AC=AB,故①正确;由AC=AB,故②错误;BC:AC=AC:AB,即:AB:AC=AC:BC,③正确;AC≈0.618AB,故④正确,故选C.【点睛】本题考查了黄金分割,理解黄金分割的概念,熟记黄金分割的比为是解题的关键.3、D【分析】根据反比例函数图象的性质对各选项分析判断后即可求解.【详解】解:A、k=8>0,∴它的图象在第一、三象限,故本选项正确,不符合题意;B、k=8>0,当x>0时,y随x的增大而减小,故本选项正确,不符合题意;C、∵,∴点(-4,-2)在它的图象上,故本选项正确,不符合题意;D、点A(x1,y1)、B(x2、y2)都在反比例函数的图象上,若x1<x2<0,则y1>y2,故本选项错误,符合题意.故选D.本题考查了反比例函数的性质,对于反比例函数,(1)k>0,反比例函数图象在一、三象限,在每一个象限内,y随x的增大而减小;(2)k<0,反比例函数图象在第二、四象限内,在每一个象限内,y随x的增大而增大.4、B【详解】解:∵M,N分别是边AB,AC的中点,∴MN是△ABC的中位线,∴MN∥BC,且MN=BC,∴△AMN∽△ABC,∴,∴△AMN的面积与四边形MBCN的面积比为1:1.故选B.本题考查了相似三角形的判定与性质,解答本题的关键是得出MN是△ABC的中位线,判断△AMN∽△ABC,要掌握相似三角形的面积比等于相似比平方.5、B【分析】直接根据反比例函数的性质排除选项即可.【详解】因为点A(,),B(1,),C(2,)是函数图象上的三点,,反比例函数的图像在二、四象限,所以在每一象限内y随x的的增大而增大,即;故选B.本题主要考查反比例函数的性质,熟练掌握反比例函数的性质是解题的关键.6、B【分析】如图,根据余弦的定义可求出AB的长,根据勾股定理即可求出BC的长.【详解】如图,∵∠C=90°,AC=9,cosA=,∴cosA==,即,∴AB=15,∴BC===12,本题考查三角函数的定义,在直角三角形中,锐角的正弦是角的对边与斜边的比值;余弦是角的邻边与斜边的比值;正切是角的对边与邻边的比值;熟练掌握三角函数的定义是解题关键.7、C【分析】由四边形ABCD为矩形得到△ADB为直角三角形,又由AD=10,AB=10,由此利用勾股定理求出BD=20,又由cos∠ADB=,得到∠ADB=60°,又矩形对角线互相平分且相等,便道的宽为1m,所以每个扇环都是圆心角为30°且外环半径为10.1,内环半径为9.1.这样可以求出每个扇环的面积.【详解】∵四边形ABCD为矩形,∴△ADB为直角三角形,又∵AD=10,AB=,∴BD=,又∵cos∠ADB=,∴∠ADB=60°.又矩形对角线互相平分且相等,便道的宽为1m,所以每个扇环都是圆心角为30°,且外环半径为10.1,内环半径为9.1.∴每个扇环的面积为.∴当π取3.14时整条便道面积为×2=10.4666≈10.1m2.便道面积约为10.1m2.故选:C.此题考查内容比较多,有勾股定理、三角函数、扇形面积,做题的关键是把实际问题转化为数学问题.8、D【分析】由旋转的性质可得旋转角为∠AOC=70°.【详解】解:∵∠AOB=40°,∠BOC=30°,∴∠AOC=70°,∵将△AOB绕着点O顺时针旋转,得到△COD,∴旋转角为∠AOC=70°,故选:D.本题考查了旋转的性质,解决本题的关键是熟练掌握旋转的意义和性质,能够有旋转的性质得到相等的角.9、B【分析】连接DF,根据垂径定理得到,得到∠DCF=∠EOD=30°,根据圆周角定理、余弦的定义计算即可.【详解】解:连接DF,∵直径CD过弦EF的中点G,∴,∴∠DCF=∠EOD=30°,∵CD是⊙O的直径,
∴∠CFD=90°,
∴CF=CD•cos∠DCF=12×=,故选B.本题考查的是垂径定理的推论、解直角三角形,掌握平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧是解题的关键.10、A【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次摸出的小球恰好是一个红球和一个绿球的情况,再利用概率公式即可求得答案.【详解】画树状图为:共有12种等可能的结果数,其中两次摸出的小球恰好是一个红球和一个绿球的结果数为6,所以两次摸出的小球恰好是一个红球和一个绿球的概率==.故选A.此题考查列表法与树状图法,解题关键在于根据题意画出树状图.11、D【分析】利用关于x轴对称的点坐标的特点即可解答.【详解】解:∵关于轴对称点为∴的坐标为(-3,-2)故答案为D.本题考查了关于x轴对称的点坐标的特点,即识记关于x轴对称的点坐标的特点是横坐标不变,纵坐标变为相反数.12、C【分析】由入射光线和反射光线与镜面的夹角相等,可得两个相似三角形,根据相似三角形的性质解答即可.【详解】解:由题意可得:∠BCA=∠EDA=90°,∠BAC=∠EAD,
故△ABC∽△AED,由相似三角形的性质,设树高x米,
则,
∴x=5.1m.
故选:C.本题考查相似三角形的应用,关键是由入射光线和反射光线与镜面的夹角相等,得出两个相似三角形.二、填空题(每题4分,共24分)13、-1【解析】将点代入反比例函数,即可求出m的值.【详解】解:将点代入反比例函数得:.故答案为:-1.本题主要考查反比例函数图象上点的坐标特征,只要点在函数的图象上,就一定满足函数的解析式14、y=5(x+2)2【分析】根据二次函数平移的性质求解即可.【详解】抛物线的平移问题,实质上是顶点的平移,原抛物线y=顶点坐标为(O,O),向左平移2个单位,顶点坐标为(-2,0),根据抛物线的顶点式可求平移后抛物线的解析式为y=5(x+2)2,故答案为y=5(x+2)2.本题主要考查二次函数平移的性质,有口诀“左加右减,上加下减”,注意灵活运用.15、18.【解析】∵在△ABC中,DE∥BC,∴△ADE∽△ABC.∵,∴,∴.16、4.【分析】连接AD,分别求出△ABC和扇形AMN的面积,相减即可得出答案.【详解】解:连接AD,∵⊙A与BC相切于点D,∴AD⊥BC,∵AB=AC,∠A=120°,∴∠ABD=∠ACD=30°,BD=CD=,∴AB=2AD,由勾股定理知BD2+AD2=AB2,即+AD2=(2AD)2解得AD=2,∴△ABC的面积=,扇形MAN得面积=,∴阴影部分的面积=.故答案为:.本题考查的是圆中求阴影部分的面积,解题关键在于知道阴影部分面积等于三角形ABC的面积减去扇形AMN的面积,要求牢记三角形面积和扇形面积的计算公式.17、(答案不唯一)【分析】可设道路的宽为xm,将4块剩余矩形平移为一个长方形,长为(50-x)m,宽为(39-x)m.根据长方形面积公式即可列出方程.【详解】解:设道路的宽为xm,依题意有
(50-x)(39-x)=1.
故答案为:.本题考查由实际问题抽象出一元二次方程的知识,应熟记长方形的面积公式.解题关键是利用平移把4块试验田平移为一个长方形的长和宽.18、πa【分析】首先根据等边三角形的性质得出∠A=∠B=∠C=60°,AB=BC=CA=a,再利用弧长公式求出的长=的长=的长=,那么勒洛三角形的周长为【详解】解:如图.∵△ABC是等边三角形,∴∠A=∠B=∠C=60°,AB=BC=CA=a,∴的长=的长=的长=,∴勒洛三角形的周长为故答案为πa.本题考查了弧长公式:(弧长为l,圆心角度数为n,圆的半径为R),也考查了等边三角形的性质.三、解答题(共78分)19、原菜地长为.【分析】设原菜地的长为,根据正方形的性质可得原矩形菜地的宽,再根据矩形的面积公式列出方程求解即可.【详解】设原菜地的长为,则原矩形菜地的宽由题意得:解得:,(不合题意,舍去)答:原菜地的长为.本题考查了一元二次方程的实际应用,依据题意正确建立方程是解题关键.20、(1)8;(2).【分析】找出临界点即可.【详解】(1)8;∵点在双曲线上,
∴,
∴解得:.
当时,,
所以当时,大棚内的温度约为.理解临界点的含义是解题的关键.21、(1)见解析;(2)2cm;(3)【分析】(1)连接DE,根据可知:是直径,可得,结合点D是AC的中点,可得出ED是AC的中垂线,从而可证得结论;(2)根据,可将AE解出,即求出⊙O的直径;(3)根据等角代换得出,然后根据CF:CD=2:1,可得AC=CF,继而根据斜边中线等于斜边一半得出,在中,求出sin∠CAB即可.【详解】证明:(1)连接,,,∴是直径∴,即,又∵是的中点,∴是的垂直平分线,∴;(2)在和中,,故可得,从而,即,解得:AE=2;即⊙O的直径为2.(3),,,是的中点,,,在中,.故可得.本题主要考查圆周角定理、切线的性质及相似三角形的性质和应用,属于圆的综合题目,难度较大,解答本题的关键是熟悉各个基础知识的内容,并能准确应用.22、(1);(2),,;(3).【分析】(1)可根据二次函数图像左加右减,上加下减的平移规律进行解答.(2)令x=0即可得到点C的坐标,令y=0即可得到点B,A的坐标(3)有图像可知的对称轴,即可得出点D的坐标;由图像得出的坐标,设直线的解析式为,代入数值,即可得出直线的解析式,就可以得出点P的坐标.【详解】解:(1)二次函数向右平移个单位长度得,,再向下平移个单位长度得故答案为:.(2)由抛物线的图象可知,.当时,,解得:,.,.(3)由抛物线的图象可知,其对称轴的为直线,将代入抛物线,可得.由抛物线的图象可知,点关于抛物线的对称轴轴的对称点为.设直线的解析式为,解得:直线直线的解析式为与轴交点即为点,.本题考查了二次函数的综合,熟练掌握二次函数的性质及图形是解题的关键.23、(1)作图见解析;(2)3.【分析】(1)以点B为圆心,任意长为半径画弧,交AB,BC于两点,分别以这两点为圆心,大于这两点距离的一半为半径画弧,在□ABCD内交于一点,过点B以及这个交点作射线,交AD于点E即可;(2)利用角平分线的性质以及平行线的性质求出∠ABE=∠AEB,从而得AE=AB,再根据AB、BC的长即可得出答案.【详解】解:(1)如图所示,BE为所求;(2)∵四边形ABCD是平行四边形,∴AB//CD,AD=BC=8,∴∠AED=∠EBC,∵BE平分∠ABC,∴∠ABE=∠EBC,∴∠ABE=∠AEB,∴AE=AB=5,∴DE=AD-AE=3.本题考查了角平分线的画法以及角平分线的性质以及平行线的性质等知识,得出AE=AB是解题关键.24、(1)1;BE1+CD1=4AD1;(1)能满足(1)中的结论,见解析;(3)1【分析】(1)依据旋转性质可得:DE=DA=CD,∠BDE=∠ADB=60°,再证明:△BDE≌△BDA,利用勾股定理可得结论;(1)将△ACD绕点A顺时针旋转110°得到△ABD′,再证明:∠D′BE=∠D′AE=90°,利用勾股定理即可证明结论仍然成立;(3)从(1)中发现:∠CBE=30°,即:点D运动路径是线段;分别求出点D位于D1时和点D运动到M时,对应的BE长度即可得到结论.【详解】解:(1)如图1,∵AB=AC,∠BAC=110°,∴∠ABC=∠ACB=30°,∵AD=DC∴∠CAD=∠ACB=30°,∠ADB=∠CAD+∠ACB=60°,∴∠BAD=90°,由旋转得:DE=DA=CD,∠BDE=∠ADB=60°∴△BDE≌△BDA(SAS)∴∠BED=∠BAD=90°,BE=AB=∴BE1+CD1=BE1+DE1=BD1∵=cos∠ADB=cos60°=∴BD=1AD∴BE1+CD1=4AD1;故答案为:;BE1+CD1=4AD1;(1)能满足(1)中的结论.如图1,将△ACD绕点A顺时针旋转110°得到△ABD′,使AC与AB重合,∵∠DAD′=110°,∠BAD′=∠CAD,∠ABD′=∠ACB=30°,AD′=AD=DE,∠DAE=∠AED=30°,BD′=CD,∠AD′B=∠ADC∴∠D′AE=90°∵∠ADB+∠ADC=180°∴∠ADB+∠AD′B=180°∴A、D、B、D′四点共圆,同理可证:A、B、E、D四点共圆,A、E、B、D′四点共圆;∴∠D′BE=90°∴BE1+BD′1=D′E1∵在△AD′E中,∠AED′=30°,∠EAD′=90°∴D′E=1AD′=1AD∴BE1+BD′1=(1AD)1=4AD1∴BE1+CD1=4AD1.(3)由(1)知:经过B、E、D三点的圆必定经过D′、A,且该圆以D′E为直径,该圆最小即D′E最小,∵D′E=1AD∴当AD最小时,经过B、E、D三点的圆最小,此时,AD⊥BC如图3,过A作AD1⊥BC于D1,∵∠ABC=30°∴BD1=AB•cos∠ABC=cos30°=3,AD1=∴D1M=BD1﹣BM=3﹣1=1由(1)知:在D运动过程中,∠CBE=30°,∴点D运动路径是线段;当点D位于D1时,由(1)中结论得:,∴BE1=当点D运动到M时,易求得:BE1=∴E点经过的路径长=BE1+BE1=1故答案为:1.本题考查的是圆的综合,综合性很强,难度系数较大,运用到了全等和勾股定理等相关知识需要熟练掌握相关基础知识.25、(1)b=2,c=3,C点坐标为(-1,0);(2)①;②【分析】(1)由一次函数求出点A、B坐标,代入抛物线解析式可求出b、c的值,令y=0可求出点C的坐标;(2)①由题意可知P(t,0),D(t,)、E(t,-t+3),然后表示出DE,利用二次函数的最值即可求出DE最大值;②分别用t表示出AP、EP、AE、DE、EF、BF,然后分类讨论相似的两种情况,或,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年江西烟草招聘考试真题及答案
- 考点解析人教版八年级上册物理光现象《平面镜成像》定向攻克试题(解析版)
- 2025年道路运输企业主要负责人和安全生产管理人员考试(安全生产管理人员)练习题及答案
- 2025年建筑结构设计与技术施工综合测评试题及答案
- 难点解析人教版八年级物理上册第5章透镜及其应用-5.5显微镜和望远镜专题训练试题(含详解)
- 2025年煤矿企业主要负责人安管能力考试考前模拟试题及答案
- 综合解析人教版八年级上册物理机械运动《运动的描述》综合练习练习题(含答案解析)
- 2025高中从句试题及答案解析
- 考点解析人教版八年级物理上册第5章透镜及其应用-凸透镜成像的规律专项训练练习题
- 综合解析人教版八年级物理《压强》单元测试练习题(含答案详解)
- 2025年材料员考试题库及完整答案(历年真题)
- 品质测量基础知识培训课件
- 贸易安全意识培训课件
- 保温材料安全培训课件
- 颜勤礼碑课件详解
- 2025年年少先队知识竞赛考试真题题库及答案
- 2025-2026学年江苏省镇江市初三上学期数学月考试题【附答案】
- 2025年许昌禹州市特招医学院校毕业生招聘86名备考练习试题及答案解析
- 脑梗阿替普酶溶栓课件
- 激光基础知识培训课件
- DLT5210.1-2021电力建设施工质量验收规程第1部分-土建工程
评论
0/150
提交评论