2026届北京市昌平区新道临川学校九年级数学第一学期期末检测试题含解析_第1页
2026届北京市昌平区新道临川学校九年级数学第一学期期末检测试题含解析_第2页
2026届北京市昌平区新道临川学校九年级数学第一学期期末检测试题含解析_第3页
2026届北京市昌平区新道临川学校九年级数学第一学期期末检测试题含解析_第4页
2026届北京市昌平区新道临川学校九年级数学第一学期期末检测试题含解析_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2026届北京市昌平区新道临川学校九年级数学第一学期期末检测试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.如图,⊙O的半径为6,点A、B、C在⊙O上,且∠BCA=45°,则点O到弦AB的距离为()A.3 B.6 C.3 D.62.抛物线y=ax2+bx+c的对称轴为直线x=﹣1,部分图象如图所示,下列判断中:①abc>1;②b2﹣4ac>1;③9a﹣3b+c=1;④若点(﹣1.5,y1),(﹣2,y2)均在抛物线上,则y1>y2;⑤5a﹣2b+c<1.其中正确的个数有()A.2 B.3 C.4 D.53.老师设计了接力游戏,用合作的方式完成“求抛物线的顶点坐标”,规则如下:每人只能看到前一人给的式子,并进行一步计算,再将结果传递给下一人,最后完成解答.过程如图所示:接力中,自己负责的一步出现错误的是()A.只有丁 B.乙和丁 C.乙和丙 D.甲和丁4.如图,一张矩形纸片ABCD的长,宽将纸片对折,折痕为EF,所得矩形AFED与矩形ABCD相似,则a:A.2:1 B.:1 C.3: D.3:25.获2019年度诺贝尔化学奖的“锂电池”创造了一个更清洁的世界.我国新能源发展迅猛,某种特型锂电池2016年销售量为8万个,到2018年销售量为97万个.设年均增长率为x,可列方程为()A.8(1+x)2=97 B.97(1﹣x)2=8 C.8(1+2x)=97 D.8(1+x2)=976.已知是一元二次方程的一个解,则m的值是A.1 B. C.2 D.7.下列图象能表示y是x的函数的是()A. B.C. D.8.将抛物线向上平移2个单位长度,再向右平移1个单位长度后,得到的抛物线解析是()A. B. C. D.9.已知点P(a,m),Q(b,n)都在反比例函数y=的图象上,且a<0<b,则下列结论一定正确的是()A.m+n<0 B.m+n>0 C.m<n D.m>n10.如图,将△AOB绕着点O顺时针旋转,得到△COD,若∠AOB=40°,∠BOC=30°,则旋转角度是()A.10° B.30° C.40° D.70°二、填空题(每小题3分,共24分)11.已知x=1是方程x2﹣a=0的根,则a=__.12.如图,△ABC中,AB=8厘米,AC=16厘米,点P从A出发,以每秒2厘米的速度向B运动,点Q从C同时出发,以每秒3厘米的速度向A运动,其中一个动点到端点时,另一个动点也相应停止运动,那么,当以A、P、Q为顶点的三角形与△ABC相似时,运动时间为_________________13.如图,点在函数的图象上,直线分别与轴、轴交于点,且点的横坐标为4,点的纵坐标为,则的面积是________.14.如图,△ABC中,AE交BC于点D,∠C=∠E,AD=4,BC=8,BD:DC=5:3,则DE的长等于__________________.15.如图,路灯距离地面8米,身高1.6米的小明站在距离灯的底部(点O)20米的A处,则小明的影子AM长为米.16.计算:____________17.如图,在平面直角坐标系中,直线l:与坐标轴分别交于A,B两点,点C在x正半轴上,且OC=OB.点P为线段AB(不含端点)上一动点,将线段OP绕点O顺时针旋转90°得线段OQ,连接CQ,则线段CQ的最小值为___________.18.如图,已知⊙的半径为1,圆心在抛物线上运动,当⊙与轴相切时,圆心的坐标是___________________.三、解答题(共66分)19.(10分)如图,已知AB是⊙O的直径,BD是⊙O的弦,延长BD到C,使DC=BD,连接AC,过点D作DE⊥AC,垂足为E.(1)求证:AB=AC;(2)求证:DE是⊙O的切线;(3)若⊙O的半径为6,∠BAC=60°,则DE=________.20.(6分)如图,在△ABC中,AB=BC,D是AC中点,BE平分∠ABD交AC于点E,点O是AB上一点,⊙O过B、E两点,交BD于点G,交AB于点F.(1)判断直线AC与⊙O的位置关系,并说明理由;(2)当BD=6,AB=10时,求⊙O的半径.21.(6分)如图,在平面直角坐标系中,已知△ABC的三个顶点的坐标分别是A(﹣1,5)、B(﹣2,0)、C(﹣4,3).(1)请在图中画出△ABC关于y轴对称的图形△A1B1C1:(2)以点O为位似中心,将△ABC缩小为原来的,得到△A2B2C2,请在图中y轴的左侧画出△A2B2C2,并求出△A2B2C2的面积.22.(8分)如图所示,AD,BE是钝角△ABC的边BC,AC上的高,求证:.23.(8分)某驻村扶贫小组实施产业扶贫,帮助贫困农户进行西瓜种植和销售.已知西瓜的成本为6元/千克,规定销售单价不低于成本,又不高于成本的两倍.经过市场调查发现,某天西瓜的销售量y(千克)与销售单价x(元/千克)的函数关系如下图所示:(1)求y与x的函数解析式(也称关系式);(2)求这一天销售西瓜获得的利润的最大值.24.(8分)在平面直角坐标系中,平移一条抛物线,如果平移后的新抛物线经过原抛物线顶点,且新抛物线的对称轴是y轴,那么新抛物线称为原抛物线的“影子抛物线”.(1)已知原抛物线表达式是,求它的“影子抛物线”的表达式;(2)已知原抛物线经过点(1,0),且它的“影子抛物线”的表达式是,求原抛物线的表达式;(3)小明研究后提出:“如果两条不重合的抛物线交y轴于同一点,且它们有相同的“影子抛物线”,那么这两条抛物线的顶点一定关于y轴对称.”你认为这个结论成立吗?请说明理由.25.(10分)如图,一艘船由A港沿北偏东65°方向航行km至B港,然后再沿北偏西40°方向航行至C港,C港在A港北偏东20°方向.求:(1)∠C的度数;(2)A,C两港之间的距离为多少km.26.(10分)如图,在中,,点为边的中点,请按下列要求作图,并解决问题:(1)作点关于的对称点;(2)在(1)的条件下,将绕点顺时针旋转,①面出旋转后的(其中、、三点旋转后的对应点分别是点、、);②若,则________.(用含的式子表示)

参考答案一、选择题(每小题3分,共30分)1、C【分析】连接OA、OB,作OD⊥AB于点D,则△OAB是等腰直角三角形,得到ODAB,即可得出结论.【详解】连接OA、OB,作OD⊥AB于点D.∵△OAB中,OB=OA=6,∠AOB=2∠ACB=90°,∴AB.又∵OD⊥AB于点D,∴ODAB=.故选C.本题考查了圆周角定理,得到△OAB是等腰直角三角形是解答本题的关键.2、B【分析】分析:根据二次函数的性质一一判断即可.【详解】详解:∵抛物线对称轴x=-1,经过(1,1),∴-=-1,a+b+c=1,∴b=2a,c=-3a,∵a>1,∴b>1,c<1,∴abc<1,故①错误,∵抛物线对称轴x=-1,经过(1,1),可知抛物线与x轴还有另外一个交点(-3,1)∴抛物线与x轴有两个交点,∴b2-4ac>1,故②正确,∵抛物线与x轴交于(-3,1),∴9a-3b+c=1,故③正确,∵点(-1.5,y1),(-2,y2)均在抛物线上,(-1.5,y1)关于对称轴的对称点为(-1.5,y1)(-1.5,y1),(-2,y2)均在抛物线上,且在对称轴左侧,-1.5>-2,则y1<y2;故④错误,∵5a-2b+c=5a-4a-3a=-2a<1,故⑤正确,故选B.本题考查二次函数与系数的关系,二次函数图象上上的点的特征,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.3、D【分析】观察每一项的变化,发现甲将老师给的式子中等式右边缩小两倍,到了丁处根据丙的式子得出了错误的顶点坐标.【详解】解:,可得顶点坐标为(-1,-6),根据题中过程可知从甲开始出错,按照此步骤下去到了丁处可得顶点应为(1,-3),所以错误的只有甲和丁.故选D.本题考查了求二次函数的顶点坐标和配方法,解题的关键是掌握配方法化顶点式的方法.4、B【分析】根据折叠性质得到AF=AB=a,再根据相似多边形的性质得到,即,然后利用比例的性质计算即可.【详解】解:∵矩形纸片对折,折痕为EF,

∴AF=AB=a,

∵矩形AFED与矩形ABCD相似,

∴,即,

∴a∶b=.

所以答案选B.本题考查了相似多边形的性质:相似多边形对应边的比叫做相似比.相似多边形的对应角相等,对应边的比相等.5、A【分析】2018年年销量=2016年年销量×(1+年平均增长率)2,把相关数值代入即可.【详解】解:设年均增长率为x,可列方程为:8(1+x)2=1.故选:A.此题主要考查了根据实际问题列一元二次方程;得到2018年收入的等量关系是解决本题的关键.6、A【解析】把x=1代入方程x2+mx﹣2=0得到关于m的一元一次方程,解之即可.【详解】把x=1代入方程x2+mx﹣2=0得:1+m﹣2=0,解得:m=1.故选A.本题考查了一元二次方程的解,正确掌握一元二次方程的解的概念是解题的关键.7、D【解析】根据函数的定义可知,满足对于x的每一个取值,y都有唯一确定的值与之对应关系,据此即可确定答案.【详解】A.如图,,对于该x的值,有两个y值与之对应,不是函数图象;B.如图,,对于该x的值,有两个y值与之对应,不是函数图象;C.如图,对于该x的值,有两个y值与之对应,不是函数图象;D.对每一个x的值,都有唯一确定的y值与之对应,是函数图象.故选:D.本题考查了函数的定义.函数的定义:在一个变化过程中,有两个变量x,y,对于x的每一个取值,y都有唯一确定的值与之对应,则y是x的函数,x叫自变量.8、B【分析】把配成顶点式,根据“左加右减、上加下减”的原则进行解答即可.【详解】解:将抛物线向上平移2个单位长度,再向右平移1个单位长度后,得到的抛物线的解析式为:故选:B考查的是二次函数的图象与几何变换,要求熟练掌握平移的规律:左加右减,上加下减.9、D【解析】根据反比例函数的性质,可得答案.【详解】∵y=−的k=-2<1,图象位于二四象限,a<1,∴P(a,m)在第二象限,∴m>1;∵b>1,∴Q(b,n)在第四象限,∴n<1.∴n<1<m,即m>n,故D正确;故选D.本题考查了反比例函数的性质,利用反比例函数的性质:k<1时,图象位于二四象限是解题关键.10、D【分析】由旋转的性质可得旋转角为∠AOC=70°.【详解】解:∵∠AOB=40°,∠BOC=30°,∴∠AOC=70°,∵将△AOB绕着点O顺时针旋转,得到△COD,∴旋转角为∠AOC=70°,故选:D.本题考查了旋转的性质,解决本题的关键是熟练掌握旋转的意义和性质,能够有旋转的性质得到相等的角.二、填空题(每小题3分,共24分)11、1【分析】把x=1代入方程x2﹣a=0得1﹣a=0,然后解关于a的方程即可.【详解】解:把x=1代入方程x2﹣a=0得1﹣a=0,解得a=1.故答案为1.本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.12、秒或1秒【分析】此题应分两种情况讨论.(1)当△APQ∽△ABC时;(2)当△APQ∽△ACB时.利用相似三角形的性质求解即可【详解】解:(1)当△APQ∽△ABC时,设用t秒时,以A、P、Q为顶点的三角形与△ABC相似.,则AP=2t,CQ=3t,AQ=16-3t.于是=,解得,t=(2)当△APQ∽△ACB时,,设用t秒时,以A、P、Q为顶点的三角形与△ABC相似.则AP=2t,CQ=3t,AQ=16-3t.于是,解得t=1.故答案为t=或t=1.此题考查了相似三角形的判定和性质,根据题意将对应边转换,得到两组相似三角形是解题的关键.13、【分析】作EC⊥x轴于C,EP⊥y轴于P,FD⊥x轴于D,FH⊥y轴于H,由题意可得点A,B的坐标分别为(4,0),B(0,),利用待定系数法求出直线AB的解析式,再联立反比例函数解析式求出点,F的坐标.由于S△OEF+S△OFD=S△OEC+S梯形ECDF,S△OFD=S△OEC=1,所以S△OEF=S梯形ECDF,然后根据梯形面积公式计算即可.【详解】解:如图,作EP⊥y轴于P,EC⊥x轴于C,FD⊥x轴于D,FH⊥y轴于H,

由题意可得点A,B的坐标分别为(4,0),B(0,),由点B的坐标为(0,),设直线AB的解析式为y=kx+,将点A的坐标代入得,0=4k+,解得k=-.∴直线AB的解析式为y=-x+.联立一次函数与反比例函数解析式得,,解得或,即点E的坐标为(1,2),点F的坐标为(3,).∵S△OEF+S△OFD=S△OEC+S梯形ECDF,而S△OFD=S△OEC=×2=1,

∴S△OEF=S梯形ECDF=×(AF+CE)×CD=×(+2)×(3-1)=.故答案为:.本题为一次函数与反比例函数的综合题,考查了反比例函数k的几何意义、一次函数解析式的求法,两函数交点问题,掌握反比例函数图象上点的坐标特征、反比例函数的比例系数k的几何意义,利用转化法求面积是解决问题的关键.14、【解析】试题分析:∵∠ADC=∠BDE,∠C=∠E,∴△ADC∽△BDE,∴,∵AD=4,BC=8,BD:DC=5:3,∴BD=5,DC=3,∴DE=.故选B.考点:相似三角形的判定与性质.15、1.【解析】根据题意,易得△MBA∽△MCO,根据相似三角形的性质可知,即,解得AM=1.∴小明的影长为1米.16、1【分析】根据分式混合运算的法则计算即可.【详解】解:原式====1,故答案为:1.本题考查了分式混合运算,主要考查学生的计算能力,掌握分式混合运算的法则是解题的关键.17、【分析】在OA上取使,得,则,根据点到直线的距离垂线段最短可知当⊥AB时,CP最小,由相似求出的最小值即可.【详解】解:如图,在OA上取使,∵,∴,在△和△QOC中,,∴△≌△QOC(SAS),∴∴当最小时,QC最小,过点作⊥AB,∵直线l:与坐标轴分别交于A,B两点,∴A坐标为:(0,8);B点(-4,0),∵,∴,.∵,∴,∴,∴线段CQ的最小值为.故答案为:.本题主要考查了一次函数图像与坐标轴的交点及三角形全等的判定和性质、垂线段最短等知识,解题的关键是正确寻找全等三角形解决问题,学会利用垂线段最短解决最值问题,属于中考压轴题.18、或或或【分析】根据圆与直线的位置关系可知,当⊙与轴相切时,P点的纵坐标为1或-1,把1或-1代入到抛物线的解析式中求出横坐标即可.【详解】∵⊙的半径为1,∴当⊙与轴相切时,P点的纵坐标为1或-1.当时,,解得,∴此时P的坐标为或;当时,,解得,∴此时P的坐标为或;故答案为:或或或.本题主要考查直线与圆的位置关系和已知函数值求自变量,根据圆与x轴相切找到点P的纵坐标的值是解题的关键.三、解答题(共66分)19、(1)见解析;(2)见解析;(3).【分析】(1)连接AD,由直径所对的圆周角度数及中点可证AD是BC的垂直平分线,根据线段垂直平分线的性质可得结论;(2)连接OD,由中位线的性质可得OD∥AC,由平行的性质与切线的判定可证;(3)易知是等边三角形,由等边三角形的性质可得CB长及度数,利用直角三角形30度角的性质及勾股定理可得结果.【详解】(1)连接AD.∵AB是⊙O的直径,∴∠ADB=90°.又∵DC=BD,AD是BC的垂直平分线∴AB=AC.(2)连接OD.∵DE⊥AC,∴∠CED=90°.∵O为AB中点,D为BC中点,∴OD∥AC.∴∠ODE=∠CED=90°.∴DE是⊙O的切线.(3)由(1)得是等边三角形在中,根据勾股定理得本题考查了圆与三角形的综合,涉及的知识点主要有圆的切线的判定、圆周角定理的推论、垂直平分线的性质、等边三角形与直角三角形的性质,灵活的将图形与已知条件相结合是解题的关键.20、(1)(1)AC与⊙O相切,证明见解析;(2)⊙O半径是.【解析】试题分析:(1)连结OE,如图,由BE平分∠ABD得到∠OBE=∠DBO,加上∠OBE=∠OEB,则∠OBE=∠DBO,于是可判断OE∥BD,再利用等腰三角形的性质得到BD⊥AC,所以OE⊥AC,于是根据切线的判定定理可得AC与⊙O相切;(2)设⊙O半径为r,则AO=10﹣r,证明△AOE∽△ABD,利用相似比得到,然后解方程求出r即可.试题解析:(1)AC与⊙O相切.理由如下:连结OE,如图,∵BE平分∠ABD,∴∠OBE=∠DBO,∵OE=OB,∴∠OBE=∠OEB,∴∠OBE=∠DBO,∴OE∥BD,∵AB=BC,D是AC中点,∴BD⊥AC,∴OE⊥AC,∴AC与⊙O相切;(2)设⊙O半径为r,则AO=10﹣r,由(1)知,OE∥BD,∴△AOE∽△ABD,∴,即,∴r=,即⊙O半径是.考点:圆切线的判定:相似经过半径的外端且垂直于这条半径的直线是圆的切线.要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.解决(2)小题的关键是利用相似比构建方程.21、(1)详见解析;(2)图详见解析,.【分析】(1)利用关于y轴的点的坐标特征写出A1、B1、C1的坐标,然后描点即可;(2)把A、B、C点的横纵坐标都乘以得到A2、B2、C2的坐标,再描点得到△A2B2C2,然后计算△ABC的面积,再把△ABC的面积乘以得到△A2B2C2的面积.【详解】解:(1)如图,△A1B1C1为所作;(2)如图,△A2B2C2为所作,△ABC的面积=3×5﹣×2×3﹣×1×5﹣×2×3=,所以△A2B2C2的面积=×=本题考查了作图−轴对称变换:几何图形都可看做是由点组成,我们在画一个图形的轴对称图形时,也是先从确定一些特殊的对称点开始的.22、见解析.【分析】根据两角相等的两个三角形相似证明△ADC∽△BEC即可.【详解】证明:∵AD,BE分别是BC,AC上的高∴∠D=∠E=90°又∠ACD=∠BCE(对顶角相等)∴△ADC∽△BEC∴.本题考查了相似三角形的判定,熟练掌握形似三角形的判定方法是解答本题的关键.①有两个对应角相等的三角形相;②有两个对应边的比相等,且其夹角相等,则两个三角形相似;③三组对应边的比相等,则两个三角形相似.23、(1)y与x的函数解析式为;(2)这一天销售西瓜获得利润的最大值为1250元.【解析】(1)当6x≤10时,由题意设y=kx+b(k=0),利用待定系数法求得k、b的值即可;当10<x≤12时,由图象可知y=200,由此即可得答案;(2))设利润为w元,当6≦x≤10时,w=-200+1250,根据二次函数的性质可求得最大值为1250;当10<x≤12时,w=200x-1200,由一次函数的性质结合x的取值范围可求得w的最大值为1200,两者比较即可得答案.【详解】(1)当6x≤10时,由题意设y=kx+b(k=0),它的图象经过点(6,1000)与点(10,200),∴,解得,∴当6x≤10时,y=-200x+2200,当10<x≤12时,y=200,综上,y与x的函数解析式为;(2)设利润为w元,当6x≤10时,y=-200x+2200,w=(x-6)y=(x-6)(-200x+200)=-200+1250,∵-200<0,6≦x≤10,当x=时,w有最大值,此时w=1250;当10<x≤12时,y=200,w=(x-6)y=200(x-6)=200x-1200,∴200>0,∴w=200x-1200随x增大而增大,又∵10<x≤12,∴当x=12时,w最大,此时w=1200,1250>1200,∴w的最大值为1250,答:这一天销售西瓜获得利润的最大值为1250元.本题考查了一次函数的应用,二次函数的应用,涉及了待定系数法,二次函数的性质,一次函数的性质等,弄清题意,找准各量间的关系是解题的关键.24、(1);(2)或;(3)结论成立,理由见解析【分析】(1)设影子抛物线表达式是,先求出原抛物线的顶点坐标,代入,可求解;(2)设原抛物线表达式是,用待定系数法可求,,即可求解;(3)分别求出两个抛物线的顶点坐标,即可求解.【详解】解:(1)原抛物线表达式是原抛物线顶点是,设影子抛物线表达式是,将代入,解得,所以“影子抛物线”的表达式是;(2)设原抛物线表达式是,则原抛物线顶点是,将代入,得①,将代入,②,由①、②解得,.所以,原抛物线表达式是或;(3)结论成立.设影子抛物线表达式是.原抛物线于轴交点坐标为则两条原抛物线可表示为与抛物线(其中、

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论