(人教版)初一数学下册平面坐标系测试题及答案(一)_第1页
(人教版)初一数学下册平面坐标系测试题及答案(一)_第2页
(人教版)初一数学下册平面坐标系测试题及答案(一)_第3页
(人教版)初一数学下册平面坐标系测试题及答案(一)_第4页
(人教版)初一数学下册平面坐标系测试题及答案(一)_第5页
已阅读5页,还剩33页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

一、选择题1.如图,在一单位为1的方格纸上,,,…,都是斜边在轴上,斜边长分别为2,4,6,…的等腰直角三角形,若的顶点坐标分别为,,,则依图中所示规律,的坐标为()A. B. C. D.2.如图所示,在平面直角坐标系中,有若干个横、纵坐标均为整数的点,按如下顺序依次排列为,,,,,根据这个规律,第个点的坐标为()A. B. C. D.3.如图,在平面直角坐标系中,一动点从原点O出发,按向上,向右,向下,向右的方向不断地移动,每移动一个单位,得到点,,,,那么点为自然数的坐标为用n表示.A. B. C. D.4.如图,一个粒子在第一象限内及x轴、y轴上运动,在第一分钟,它从原点运动到点(1,0),第二分钟,它从点(1,0)运动到点(1,1),而后它接着按图中箭头所示在与x轴,y轴平行的方向上来回运动,且每分钟移动1个单位长度,那么在第2019分钟时,这个粒子所在位置的坐标是()A.(44,5) B.(5,44) C.(44,6) D.(6,44)5.已知点E(x0,y0),F(x2,y2),点M(x1,y1)是线段EF的中点,则,.在平面直角坐标系中有三个点A(1,-1),B(-1,-1),C(0,1),点P(0,2)关于A的对称点为P1(即P,A,P1三点共线,且PA=P1A),P1关于B的对称点为P2,P2关于C的对称点为P3,按此规律继续以A,B,C为对称点重复前面的操作,依次得到P4,P5,P6,…,则点P2015的坐标是()A.(0,0) B.(0,2)C.(2,-4) D.(-4,2)6.如图,在平面直角坐标系中,有若干个横纵坐标分别为整数的点,其顺序为(1,0)、(1,1)、(1,2)、(2,2)…根据这个规律,第2016个点的坐标为()A.(45,9) B.(45,13) C.(45,22) D.(45,0)7.如图,在平面直角坐标系中,从点P1(﹣1,0),P2(﹣1,﹣1),P3(1,﹣1),P4(1,1),P5(﹣2,1),P6(﹣2,﹣2),…依次扩展下去,则P2017的坐标为()A.(504,504)B.(﹣504,504)C.(﹣504,﹣504)D.(﹣505,504)8.如图,在平面直角坐标系中,有若干个横纵坐标分别为整数的点,其顺序为……根据这个规律,第个点的坐标为()A. B. C. D.9.如图,将边长为1的正方形OAPB沿x轴正方向连续翻转2021次,点P依次落在点P1、P2、P3……P2021的位置,由图可知P1(1,1),P2(2,0),P3(2,0),P4(3,1),则P2021的坐标()A.(2020,0) B.(2020,1) C.(2021,0) D.(2021,1)10.一只跳蚤在第一象限及、轴上跳动,第一次它从原点跳到,然后按图中箭头所示方向跳动……,每次跳一个单位长度,则第2020次跳到点()A. B. C. D.二、填空题11.某校数学课外小组,在坐标纸上为学校的一块空地设计植树方案如下:第k棵树种植在点Pk(xk,yk)处,其中x1=1,y1=1,当k≥2时,xk=xk﹣1+1﹣5([]﹣[]),yk=yk﹣1+[]﹣[],[a]表示非负实数a的整数部分,例如[2.8]=2,[0.3]=0.按此方案,则第2019棵树种植点的坐标为_____.12.在平面直角坐标系中,一蚂蚁从原点O出发,按向上、向右、向下,向右的方向依次不断移动,每次移动1个单位,其行走路线如图所示,A1(0,1),A2(1,1),A3(1,0)写出点A101的坐标_____.13.如图,一个点在第一象限及x轴、y轴上运动,在第一秒钟,它从原点(0,0)运动到(0,1),然后接着按图中箭头所示方向运动,即(0,0)→(0,1)→(1,1)→(1,0)…,且每秒移动一个单位,那么第2019秒时这个点所在位置的坐标是_____.14.如图,在平面直角坐标系中,半径均为1个单位长度的半圆、、,组成一条平滑的曲线,点P从原点O出发,沿这条曲线向右运动,速度为每秒个单位长度,则第2017秒时,点P的坐标是______.15.如图,在平面直角坐标系上有个点,点第次向上跳动个单位至点,紧接着第次向右跳动个单位至点,第次向上跳动个单位,第次向右跳动个单位,第次又向上跳动个单位,第次向左跳动个单位,依此规律跳动下去,的坐标是___________,点第次跳动至的坐标为__________;则点第次跳动至的坐标是__________.16.如图,在平面直角坐标系中,有若干个整数点,其顺序按图中“→”方向排列,如(1,0),(2,0),(2,1),(3,2),(3,1),(3,0)…根据这个规律探究可得,第100个点的坐标为________.17.在平面直角坐标系中,点经过某种变换后得到点,我们把点叫做点的终结点.已知点的终结点为,点的终结点为,点的终结点为,这样依次得到、、、、…、…,若点的坐标为,则点的坐标为__________.18.如图,在平面直角坐标系中,一动点从原点O出发,按向上,向右,向下,向右的方向不断移动,每移动一个单位,得到点,,,,…,那么点的坐标为__________.19.如图,在平面直角坐标系中,横坐标和纵坐标都为整数的点称为整点.观察图中每个正方形(实线)四条边上的整点的个数,假如按图规律继续画正方形(实线),请你猜测由里向外第15个正方形(实线)的四条边上的整点共有________个.20.一只电子玩具在第一象限及x,y轴上跳动,第一次它从原点跳到(0,1),然后按图中箭头所示方向跳动(0,0)→(0,1)→(1,1)→(1,0)→……,每次跳一个单位长度,则第2021次跳到点______.三、解答题21.在平面直角坐标系中,为坐标原点.已知两点,且、满足;若四边形为平行四边形,且,点在轴上.(1)如图①,动点从点出发,以每秒个单位长度沿轴向下运动,当时间为何值时,三角形的面积等于平行四边形面积的四分之一;(2)如图②,当从点出发,沿轴向上运动,连接、,、、存在什么样的数量关系,请说明理由(排除在和两点的特殊情况).22.在平面直角坐标系中,点,的坐标分别为,,现将线段先向上平移3个单位,再向右平移1个单位,得到线段,连接,.(1)如图1,求点,的坐标及四边形的面积;图1(2)如图1,在轴上是否存在点,连接,,使?若存在这样的点,求出点的坐标;若不存在,试说明理由;(3)如图2,在直线上是否存在点,连接,使?若存在这样的点,直接写出点的坐标;若不存在,试说明理由.图2(4)在坐标平面内是否存在点,使?若存在这样的点,直接写出点的坐标的规律;若不存在,请说明理由.23.在平面直角坐标系中,,满足.(1)直接写出、的值:;;(2)如图1,若点满足的面积等于6,求的值;(3)设线段交轴于C,动点E从点C出发,在轴上以每秒1个单位长度的速度向下运动,动点F从点出发,在轴上以每秒2个单位长度的速度向右运动,若它们同时出发,运动时间为秒,问为何值时,有?请求出的值.24.如图1,已知,点A(1,a),AH⊥x轴,垂足为H,将线段AO平移至线段BC,点B(b,0),其中点A与点B对应,点O与点C对应,a、b满足.(1)填空:①直接写出A、B、C三点的坐标A(________)、B(________)、C(________);②直接写出三角形AOH的面积________.(2)如图1,若点D(m,n)在线段OA上,证明:4m=n.(3)如图2,连OC,动点P从点B开始在x轴上以每秒2个单位的速度向左运动,同时点Q从点O开始在y轴上以每秒1个单位的速度向下运动.若经过t秒,三角形AOP与三角形COQ的面积相等,试求t的值及点P的坐标.25.如图,在平面直角坐标系中,直线与x轴交于点,与y轴交于点,且(1)求;(2)若为直线上一点.①的面积不大于面积的,求P点横坐标x的取值范围;②请直接写出用含x的式子表示y.(3)已知点,若的面积为6,请直接写出m的值.26.如图所示,A(1,0)、点B在y轴上,将三角形OAB沿x轴负方向平移,平移后的图形为三角形DEC,且点C的坐标为(-3,2).(1)直接写出点E的坐标;D的坐标(3)点P是线段CE上一动点,设∠CBP=x°,∠PAD=y°,∠BPA=z°,确定x,y,z之间的数量关系,并证明你的结论.27.在平面直角坐标系中,已知线段,点的坐标为,点的坐标为,如图1所示.(1)平移线段到线段,使点的对应点为,点的对应点为,若点的坐标为,求点的坐标;(2)平移线段到线段,使点在轴的正半轴上,点在第二象限内(与对应,与对应),连接如图2所示.若表示△BCD的面积),求点、的坐标;(3)在(2)的条件下,在轴上是否存在一点,使表示△PCD的面积)?若存在,求出点的坐标;若不存在,请说明理由.28.如图1,在平面直角坐标系中,A(a,0)是x轴正半轴上一点,C是第四象限内一点,CB⊥y轴交y轴负半轴于B(0,b),且|a﹣3|+(b+4)2=0,S四边形AOBC=16.(1)求点C的坐标.(2)如图2,设D为线段OB上一动点,当AD⊥AC时,∠ODA的角平分线与∠CAE的角平分线的反向延长线交于点P,求∠APD的度数;(点E在x轴的正半轴).(3)如图3,当点D在线段OB上运动时,作DM⊥AD交BC于M点,∠BMD、∠DAO的平分线交于N点,则点D在运动过程中,∠N的大小是否会发生变化?若不变化,求出其值;若变化,请说明理由.29.已知A(0,a)、B(b,0),且+(b﹣4)2=0.(1)直接写出点A、B的坐标;(2)点C为x轴负半轴上一点满足S△ABC=15.①如图1,平移直线AB经过点C,交y轴于点E,求点E的坐标;②如图2,若点F(m,10)满足S△ACF=10,求m.(3)如图3,D为x轴上B点右侧的点,把点A沿y轴负半轴方向平移,过点A作x轴的平行线l,在直线l上取两点G、H(点H在点G右侧),满足HB=8,GD=6.当点A平移到某一位置时,四边形BDHG的面积有最大值,直接写出面积的最大值.30.已知,在平面直角坐标系中,AB⊥x轴于点B,点A满足,平移线段AB使点A与原点重合,点B的对应点为点C.(1)则a=,b=,点C坐标为;(2)如图1,点D(m,n)在线段BC上,求m,n满足的关系式;(3)如图2,E是线段OB上一动点,以OB为边作∠BOG=∠AOB,交BC于点G,连CE交OG于点F,当点E在线段OB上运动过程中,的值是否会发生变化?若变化请说明理由,若不变,请求出其值.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】根据脚码确定出脚码为偶数时的点的坐标,得到规律当脚码是2、6、10…时,横坐标为1,纵坐标为脚码的一半的相反数,当脚码是4、8、12.…时,横坐标是2,纵坐标为脚码的一半,然后确定出第2020个点的坐标即可.【详解】∵各三角形都是等腰直角三角形,∴直角顶点的纵坐标的长度为斜边的一半,A2(1,-1),A4(2,2),A6(1,-3),A8(2,4),A10(1,-5),A12(2,6),…,∵2020÷4=505,∴点A2020在第一象限,横坐标是2,纵坐标是2020÷2=1010,∴A2020的坐标为(2,1010).故选:D.【点睛】本题是对点的坐标变化规律的考查,根据2012是偶数,求出点的脚码是偶数时的变化规律是解题的关键.2.D解析:D【分析】以正方形最外边上的点为准考虑,点的总个数等于最右边下角的点横坐标的平方,且横坐标为奇数时最后一个点在x轴上,为偶数时,从x轴上的点开始排列,求出与2020最接近的平方数为2025,然后写出第2020个点的坐标即可.【详解】解:由图形可知,图中各点分别组成了正方形点阵,每个正方形点阵的整点数量依次为最右下角点横坐标的平方且当正方形最右下角点的横坐标为奇数时,这个点可以看做按照运动方向到达x轴,当正方形最右下角点的横坐标为偶数时,这个点可以看做按照运动方向离开x轴∵452=2025∴第2025个点在x轴上坐标为(45,0)则第2020个点在(45,5)故选:D.【点睛】本题为平面直角坐标系下的点坐标规律探究题,解答时除了注意点坐标的变化外,还要注意点的运动方向.3.C解析:C【解析】【分析】根据图形分别求出、2、3时对应的点的坐标,然后根据变化规律写出即可.【详解】由图可知,时,,点,时,,点,时,,点,……所以,点,故选C.【点睛】本题考查了点的坐标的变化规律,仔细观察图形,分别求出、2、3时对应的点的对应的坐标是解题的关键.4.A解析:A【解析】【分析】要弄清粒子的运动规律,先观察横坐标和纵坐标的相同点:(0,0),粒子运动了0分钟.(1,1)就是运动了2=1×2分钟,将向左运动!(2,2)粒子运动了6=2×3分钟,将向下运动!(3,3),粒子运动了12=3×4分钟.将向左运动…(44,44)点处粒子运动了44×45=1980分钟!此时粒子会将向下移动,进而得出答案.【详解】粒子所在位置与运动时间的情况如下:位置:(1,1),运动了2=1×2(分钟),方向向左;位置:(2,2),运动了6=2×3(分钟),方向向下;位置:(3,3),运动了12=3×4(分钟),方向向左;位置:(4,4),运动了20=4×5(分钟),方向向下,由上式规律,到(44,44)处时,粒子运动了44×45=1980(分钟),方向向下,故到2019分钟,须由(44,44)再向下运动2019-1980=39(分钟),所以在第2019分钟时,这个粒子的纵坐标为44-39=5,所以其坐标为(44,5),故选A.【点睛】本题考查了点的坐标的确定.本题也是一个阅读理解并猜想规律的题目,解答此题的关键是总结规律首先确定点所在的大致位置,然后就可以进一步推得点的坐标.5.A解析:A【解析】试题解析:设P1(x,y),∵点A(1,-1)、B(-1,-1)、C(0,1),点P(0,2)关于A的对称点为P1,P1关于B的对称点P2,∴=1,=-1,解得x=2,y=-4,∴P1(2,-4).同理可得,P1(2,-4),P2(-4,2),P3(4,0),P4(-2,-2),P5(0,0),P6(0,2),P7(2,-4),…,…,∴每6个数循环一次.∵=335…5,∴点P2015的坐标是(0,0).故选A.6.A解析:A【解析】观察图形可知,到每一横坐标结束,经过整数点的点的总个数等于最后点的横坐标的平方,并且横坐标是奇数时最后以横坐标为该数,纵坐标为0结束,当横坐标是偶数时,以横坐标为1,纵坐标为横坐标减1的点结束,根据此规律解答即可:横坐标为1的点结束,共有1个,1=12,横坐标为2的点结束,共有2个,4=22,横坐标为3的点结束,共有9个,9=32,横坐标为4的点结束,共有16个,16=42,…横坐标为n的点结束,共有n2个.∵452=2025,∴第2025个点是(45,0).∴第2016个点是(45,9).点睛:本题考查了点的坐标,观察出点个数与横坐标存在平方关系是解题的关键7.D解析:D【解析】分析:根据各个点的位置关系,可得出下标为4的倍数的点在第一象限,被4除余1的点在第二象限,被4除余2的点在D第三象限,被4除余3的点在第四象限,点P2017的在第二象限,且纵坐标=2016÷4,再根据第二项象限点的规律即可得出结论.本题解析:由规律可得,2017÷4=504…1,∴点P2017的在第二象限的角平分线上,∵点P5(−2,1),点P9(−3,2),点P13(−4,3),∴点P2017(−505,504),故选D.点睛:本题考查了规律型:点的坐标,是一个阅读理解,猜想规律的题目,解答此题的关键要首先确定点的大致位置,处于此位置的点的规律,推出点的坐标.8.A解析:A【分析】根据图形和数字规律、直角坐标系的性质,首先根据题意,第个点的坐标为:第个点的坐标为第个点的坐标为:再总结规律,通过计算即可得到答案.【详解】解:根据题意,第个点的坐标为:第个点的坐标为第个点的坐标为:所以第个点的坐标为:,∵,∴第2025个数为:∴第2021个数为第2025个数向上推4个数,即故选:A.【点睛】本题考查了直角坐标系、图形和数字规律的知识;解题的关键是熟练掌握直角坐标系、图形和数字规律的性质,从而完成求解.9.D解析:D【分析】观察规律可知,每4次翻折为一个循环,若的余数为0,则;若的余数为1,则;若的余数为2,则;若的余数为3,则;由此进行判断是在第505次循环完成后再翻折一次,那么横坐标即为.【详解】解:由题意得:P1(1,1),P2(2,0),P3(2,0),P4(3,1)P5(5,1),P6(6,0),P7(6,0),P8(7,1),……由此可以得出规律:每4次翻折为一个循环,若的余数为0,则,(n-1,1);若的余数为1,则,(n,1);若的余数为2,则,(n,0);若的余数为3,则,(n-1,0);∵2021÷4=505余1,∴横坐标即为,(2021,1),故选D.【点睛】本题主要考查了坐标的规律,解题的关键在于能够准确地根据图形找到坐标的规律进行求解.10.D解析:D【分析】根据跳蚤运动的速度确定:用的次数是次,到是第次,到是第次,到是第次,到是第次,到是第次,依此类推,到是第2025次,后退5次可得2020次所对应的坐标.【详解】解:跳蚤运动的速度是每秒运动一个单位长度,用的次数是次,到是第次,到是第次,到是第次,到是第次,到第次,依此类推,到是第2025次.,故第2020次时跳蚤所在位置的坐标是.故选:D.【点睛】此题主要考查了数字变化规律,解决本题的关键是正确读懂题意,能够正确确定点运动的顺序,确定运动的距离,从而可以得到到达每个点所用的时间.二、填空题11.(4,404)【分析】分别根据所给的xk和yk的关系式找到种植点的横坐标与纵坐标的规律性的式子,然后把2019代入计算即可.【详解】解:根据题意,x1=1x2﹣x1=1﹣5[]+5[]x解析:(4,404)【分析】分别根据所给的xk和yk的关系式找到种植点的横坐标与纵坐标的规律性的式子,然后把2019代入计算即可.【详解】解:根据题意,x1=1x2﹣x1=1﹣5[]+5[]x3﹣x2=1﹣5[]+5[]x4﹣x3=1﹣5[]+5[]…xk﹣xk﹣1=1﹣5[]+[]∴x1+(x2﹣x1)+(x3﹣x2)+(x4﹣x3)+…+(xk﹣xk﹣1)=1+1﹣5[]+5[]+1﹣5[]+5[]+1﹣5[]+5[]+…+1﹣5[]+[]∴xk=k﹣5[]当k=2019时,x2019=2019﹣5[]=2019﹣5×403=4y1=1y2﹣y1=[]﹣[]y3﹣y2=[]﹣[]y4﹣y3=[]﹣[]…yk﹣yk﹣1=[]﹣[]∴yk=1+[]当k=2019时,y2019=1+[]=1+403=404∴第2019棵树种植点的坐标为(4,404).故答案为:(4,404).【点睛】本题考查了如何根据坐标确定位置,根据题意发现点的横纵坐标的规律是解题的关键.12.(50,1)【分析】先找出点、、、、的坐标,然后根据点的坐标的变化可找出变化规律“为自然数”,依此规律即可得出结论.【详解】解:观察图形可知:,,,,,为自然数.,.故答案为:.【解析:(50,1)【分析】先找出点、、、、的坐标,然后根据点的坐标的变化可找出变化规律“为自然数”,依此规律即可得出结论.【详解】解:观察图形可知:,,,,,为自然数.,.故答案为:.【点睛】本题考查了规律型中点的坐标,根据点的变化找出变化规律“为自然数”是解题的关键.13.(5,44)【解析】【分析】应先判断出走到坐标轴上的点所用的时间以及相对应的坐标,可发现走完一个正方形所用的时间分别为3,5,7,9…,此时点在坐标轴上,进而得到规律.【详解】由题意可知点解析:(5,44)【解析】【分析】应先判断出走到坐标轴上的点所用的时间以及相对应的坐标,可发现走完一个正方形所用的时间分别为3,5,7,9…,此时点在坐标轴上,进而得到规律.【详解】由题意可知点移动的速度是1个单位长度/每秒,则:运动到(1,1)是2秒,2=1×2运动到(2,2)是6秒,6=2×3运动到(3,3)是12秒,12=3×4运动到(4,4)是20秒,20=4×5⋯⋯44×45=1980,即1980秒运动到点(44,44)2019-1980=39∵坐标为偶数的点的运动方向是:向上、向左,故第2019秒时这个点所在位置是点(44,44)向左运动39个单位,44-39=5,即第2019秒时这个点所在位置的坐标是(5,44)故答案为:(5,44)【点睛】此题主要考查了点的坐标的变化规律,得出运动变化的规律进而得出第2019秒时点所在位置的坐标是解决问题的关键.14.【解析】【分析】以时间为点P的下标,根据半圆的半径以及部分点P的坐标可找出规律“,,,”,依此规律即可得出第2017秒时,点P的坐标.【详解】以时间为点P的下标.观察,发现规律:,,,,解析:【解析】【分析】以时间为点P的下标,根据半圆的半径以及部分点P的坐标可找出规律“,,,”,依此规律即可得出第2017秒时,点P的坐标.【详解】以时间为点P的下标.观察,发现规律:,,,,,,,,,,.,第2017秒时,点P的坐标为,故答案为:.【点睛】本题考查了规律型中点的坐标,解题的关键是找出点P的变化规律“,,,”本题属于基础题,难度不大,解决该题型题目时,根据圆的半径及时间罗列出部分点P的坐标,根据坐标发现规律是关键.15.【详解】由题中规律可得出如下结论:设点Pm的横坐标的绝对值是n,则在y轴右侧的点的下标分别是4(n-1)和4n-3,在y轴左侧的点的下标是:4n-2和4n-1;结合图像解析:【详解】由题中规律可得出如下结论:设点Pm的横坐标的绝对值是n,则在y轴右侧的点的下标分别是4(n-1)和4n-3,在y轴左侧的点的下标是:4n-2和4n-1;结合图像可知:,由此可知每经次变化后点的横坐标增加,纵坐标增加,∵,,,∴的坐标是.故答案为;;.点睛:此题主要考查了点的坐标,解决问题的关键是分析出题目的规律,找出题目中点的坐标的规律,总结规律时要注意观察数字之间的联系,大胆的猜想.16.(15,5)【详解】由图形可知:点的个数依次是1、2、3、4、5、…,且横坐标是偶数时,箭头朝上,∵1+2+3+…+13=91,1+2+3+…+14=105,∴第91个点的坐标为(13,0)解析:(15,5)【详解】由图形可知:点的个数依次是1、2、3、4、5、…,且横坐标是偶数时,箭头朝上,∵1+2+3+…+13=91,1+2+3+…+14=105,∴第91个点的坐标为(13,0),第100个点横坐标为14.∵在第14行点的走向为向上,∴纵坐标为从第92个点向上数8个点,即为8;∴第100个点的坐标为(14,8).故答案为(14,8).点睛:本题考查了学生的观察图形的能力和理解能力,解此题的关键是根据图形得出规律,题目比较典型,但是是一道比较容易出错的题目.17.-3,3【解析】【分析】利用点P(x,y)的终结点的定义分别写出点P2的坐标为(1,4),点P3的坐标为(-3,3),点P4的坐标为(-2,-1),点P5的坐标为(2,0),…,从而得到每4次解析:【解析】【分析】利用点P(x,y)的终结点的定义分别写出点P2的坐标为(1,4),点P3的坐标为(-3,3),点P4的坐标为(-2,-1),点P5的坐标为(2,0),…,从而得到每4次变换一个循环,然后利用2019=4×504+3可判断点P2019的坐标与点P3的坐标相同.【详解】解:根据题意得点P1的坐标为(2,0),则点P2的坐标为(1,4),点P3的坐标为(-3,3),点P4的坐标为(-2,-1),点P5的坐标为(2,0),…,而2019=4×504+3,所以点P2019的坐标与点P3的坐标相同,为(-3,3).故答案为(-3,3).【点睛】本题考查了几何变换:四种变换方式:对称、平移、旋转、位似.掌握在直角坐标系中各种变换的对应的坐标变化规律,是解决问题的关键.18.【分析】由题意可知,每隔四次移动重复一次,继续得出A5,A6,A7,A8,…,归纳出点An的一般规律,从而可求得结果.【详解】∵,,,∴根据点的平移规律,可分别得:,,,,,,,,…,,,解析:【分析】由题意可知,每隔四次移动重复一次,继续得出A5,A6,A7,A8,…,归纳出点An的一般规律,从而可求得结果.【详解】∵,,,∴根据点的平移规律,可分别得:,,,,,,,,…,,,,∵2021=505×4+1∴的横坐标为2×505=1010,纵坐标为1即故答案为:【点睛】本题考查了平面直角坐标系中点的坐标的规律问题,点平移的坐标特征,体现了由特殊到一般的数学思想,关键是由前面若干点的的坐标寻找出规律.19.60【分析】运用从特殊到一般的推理归纳的思想,利用正方形为中心对称图形,分析其一条边上的整点个数,进而推断整个正方形的四条边上的整点.【详解】解:①第1个正方形,对于其中1条边,除去该边的一解析:60【分析】运用从特殊到一般的推理归纳的思想,利用正方形为中心对称图形,分析其一条边上的整点个数,进而推断整个正方形的四条边上的整点.【详解】解:①第1个正方形,对于其中1条边,除去该边的一个端点,这条边有1个整点.根据正方形是中心对称图形,则四条边共有41=4个整点,②第2个正方形,对于其中1条边,除去该边的一个端点,这条边有2个整点.根据正方形是中心对称图形,则四条边共有42=8个整点,③第3个正方形,对于其中1条边,除去该边的一个端点,这条边共有3个整点.根据正方形是中心对称图形,则四条边共有43=12个整点,④第4个正方形,对于其中1条边,除去该边的一个端点,这条边共有4个整点.根据正方形是中心对称图形,则四条边共有44=16个整点,⑤第5个正方形,对于其中1条边,除去该边的一个端点,这条边共有5个整点.根据正方形是中心对称图形,则四条边共有45=20个整点,...以此类推,第15个正方形,四条边上的整点共有415=60个.故答案为:60.【点睛】本题主要考查了坐标与图形的性质,图形中的数字的变化规律.准确找出每一个正方形(实线)四条边上的整点的个数与正方形序号的关系是解题的关键.20.(3,44)【分析】由题意分析得(0,1)用的次数是1次,即次,(0,2)用的次数是8次,即次,(0,3)用的次数是9次,即次,(0,4)用的次数是24次,即次,(0,5)用的次数是25次,即次解析:(3,44)【分析】由题意分析得(0,1)用的次数是1次,即次,(0,2)用的次数是8次,即次,(0,3)用的次数是9次,即次,(0,4)用的次数是24次,即次,(0,5)用的次数是25次,即次,以此类推,(0,45)用的次数是2025次,即次,后退4次可得2021次所对应的坐标.【详解】由题可知,电子玩具是每次跳一个单位长度,则(0,1)用的次数是1次,即次,(0,2)用的次数是8次,即次,(0,3)用的次数是9次,即次,(0,4)用的次数是24次,即次,(0,5)用的次数是25次,即次,…以此类推,(0,45)用的次数是2025次,即次,2025-1-3=2021,∴第2021次时电子玩具所在位置的坐标是(3,44).故答案为:(3,44).【点睛】此题主要考查了数字变化规律,解决本题的关键是正确读懂题意,能够正确确定点运动的顺序,确定运动的距离,从而确定次数的规律.三、解答题21.(1)1或3;(2)∠APD=∠CDP+∠PAB或∠APD=∠PAB-∠CDP,理由见解析【分析】(1)由非负数的性质求出a,b,得到AB的长,结合点C坐标求出平行四边形ABCD的面积,再根据的面积等于平行四边形面积的,列出方程,解之即可;(2)分点P在线段OC上和点P在OC的延长线上,两种情况,过P作PQ∥AB,利用平行线的性质求解.【详解】解:(1)∵,∴a=-4,b=3,即A(-4,0),B(3,0),∴AB=3-(-4)=7,又C(0,4),∴OC=4,∴平行四边形ABCD的面积=4×7=28,由题意可知:PC=2t,则OP=,∵的面积等于平行四边形面积的,∴,解得:t=1或t=3,(2)如图,当点P在线段OC上时,过P作PQ∥AB,则PQ∥CD,∴∠CDP=∠DPQ,∠APQ=∠PAB,∴∠APD=∠DPQ+∠APQ=∠CDP+∠PAB;当点P在OC的延长线上时,过P作PQ∥AB,则PQ∥CD,∴∠CDP=∠DPQ,∠APQ=∠PAB,∴∠APD=∠APQ-∠DPQ=∠PAB-∠CDP.【点睛】本题考查了坐标与图形,平行线的性质,解题的关键是掌握坐标和图形的关系,将坐标与线段长进行转化,同时适当添加辅助线,构造平行线.22.(1),,;(2)存在,或;(3)存在,或;(4)存在,的纵坐标总是4或.或者:点在平行于轴且与轴的距离等于4的两条直线上;或者:点在直线或直线上【分析】(1)根据点的平移规律,即可得到对应点坐标;(2)由,可以得到,即可得到P点坐标;(3)由,可以得到,结合点C坐标,就可以求得点Q坐标;(4)由,可以AB边上的高的长度,从而得到点的坐标规律.【详解】(1)∵点,点∴向上平移3个单位,再向右平移1个单位之后对应点坐标为,点∴∴(2)存在,理由如下:∵即:=12∴∴或(3)存在,理由如下:∵即:∵∴∵∴或(4)存在:理由如下:∵∴设中,AB边上的高为h则:∴∴点在直线或直线上【点睛】本题考查直角坐标系中点的坐标平移规律,由点到坐标轴的距离确定点坐标等知识点,根据相关内容解题是关键.23.(1),2;(2)或;(3)或2【分析】(1)由,求出和的值即可;(2)过点作直线轴,延长交于,设出点坐标,根据面积关系求出点坐标,再求出的长度,即可求出值;(3)先根据求出点坐标,再根据面积关系求出值即可.【详解】解:(1),,,,,故答案为,2;(2)如图1,过作直线垂直于轴,延长交直线于点,设的坐标为,过作交直线于点,连接,,,,解得,,,又点满足的面积等于6,,解得或;(3)如图2,延长交轴于,过作轴于,过作轴于,,,解得,,,,解得,,,,由题知,当秒时,,,,,,,,解得或2.【点睛】本题是三角形综合题,考查三角形的面积,熟练掌握直角坐标系的知识,三角形的面积,梯形面积等知识是解题的关键.24.(1)①1,4;3,0;2,﹣4;②2;(2)见解析;(3)t=1.2时,P(0.6,0),t=2时,P(﹣1,0).【分析】(1)①利用非负数的性质求出a,b的值,可得结论.②利用三角形面积公式求解即可.(2)连接DH,根据△ODH的面积+△ADH的面积=△OAH的面积,构建关系式,可得结论.(3)分两种情形:①当点P在线段OB上,②当点P在BO的延长线上时,分别利用面积关系,构建方程,可得结论.【详解】(1)解:①∵,又∵≥0,(b﹣3)2≥0,∴a=4,b=3,∴A(1,4),B(3,0),∵B是由A平移得到的,∴A向右平移2个单位,向下平移4个单位得到B,∴点C是由点O向右平移2个单位,向下平移4个单位得到的,∴C(2,﹣4),故答案为:1,4;3,0;2,﹣4.②△AOH的面积=×1×4=2,故答案为:2.(2)证明:如图,连接DH.∵△ODH的面积+△ADH的面积=△OAH的面积,∴×1×n+×4×(1﹣m)=2,∴4m=n.(3)解:①当点P在线段OB上,由三角形AOP与三角形COQ的面积相等得:OP·yA=OQ·xC,∴×(3﹣2t)×4=×2t,解得t=1.2.此时P(0.6,0).②当点P在BO的延长线上时,由三角形AOP与三角形COQ的面积相等得:OP·yA=OQ·xC,×(2t﹣3)×4=×2×t,解得t=2,此时P(﹣1,0),综上所述,t=1.2时,P(0.6,0),t=2时,P(﹣1,0).【点睛】本题考查坐标与图形变化-平移,非负数的性质,三角形的面积等知识,解题的关键是学会利用参数构建方程解决问题.25.(1)4;(2)①或;②;(3)或.【分析】(1)先根据偶次方和绝对值的非负性求出的值,从而可得点的坐标和的长,再利用直角三角形的面积公式即可得;(2)①分和两种情况,先分别求出和的面积,再根据已知条件建立不等式,解不等式即可得;②分和两种情况,利用、和的面积关系建立等式,化简即可得;(3)过点作轴的平行线,交直线于点,从而可得,再分、和三种情况,分别利用三角形的面积公式建立方程,解方程即可得.【详解】解:(1)由题意得:,解得,,,轴轴,;(2)①的面积不大于面积的,的面积小于的面积,则分以下两种情况:如图,当时,则,,因此有,解得,此时的取值范围为;如图,当时,则,,因此有,解得,此时的取值范围为,综上,点横坐标的取值范围为或;②当时,则,,由(2)①可知,,则,即;如图,当时,则,,,,,解得,综上,;(3)过点作轴的平行线,交直线于点,由(2)②可知,,则,由题意,分以下三种情况:①如图,当时,则,,解得,不符题设,舍去;②如图,当时,则,,解得或(不符题设,舍去);③如图,当时,则,,解得,符合题设,综上,的值为或.【点睛】本题考查了偶次方和绝对值的非负性、坐标与图形等知识点,较难的是题(3),正确分三种情况讨论是解题关键.26.(1)(-2,0);(-3,0);(2)z=x+y.证明见解析.【分析】(1)依据平移的性质可知BC∥x轴,BC=AE=3,然后依据点A和点C的坐标可得到点E和点D的坐标;(2过点P作PF∥BC交AB于点F,则PF∥AD,然后依据平行线的性质可得到∠BPF=∠CBP=x°,∠APF=∠DAP=y°,最后,再依据角的和差关系进行解答即可.【详解】解:(1)∵将三角形OAB沿x轴负方向平移,∴BC∥x轴,BC=AE=3.∵C(-3,2),A(1,0),∴E(-2,0),D(-3,0).故答案为:(-2,0);(-3,0).(2)z=x+y.证明如下:如图,过点P作PF∥BC交AB于点F,则PF∥AD,∴∠BPF=∠CBP=x°,∠APF=∠DAP=y°,∴∠BPA=∠BPF+∠APF=x°+y°=z°,∴z=x+y.【点睛】此题是几何变换综合题,主要考查了点的坐标的特点,平移得性质,平面坐标系中点的坐标和距离的关系,解本题的关键是由线段和部分点的坐标,得出其它点的坐标.27.(1);(2);(3)存在点,其坐标为或.【分析】(1)利用平移得性质确定出平移得单位和方向;(2)根据平移得性质,设出平移单位,根据S△BCD=7(S△BCD建立方程求解,即可);(3)设出点P的坐标,表示出PC用,建立方程求解即可.【详解】(1)∵B(3,0)平移后的对应点,∴设,∴即线段向左平移5个单位,再向上平移4个单位得到线段∴点平移后的对应点;(2)∵点C在轴上,点D在第二象限,∴线段向左平移3个单位,再向上平移个单位,∴连接,,∴∴;(3)存在设点,∴∵,∴∴,∴∴存在点,其坐标为或.【点睛】本题考查了线段平移的性质,解题的关键在利用平移的性质,得到点坐标的关系、图形面积的关系,根据面积的关系,从而求出点的坐标.28.(1)C(5,﹣4);(2)90°;(3)见解析.【详解】分析:(1)利用非负数的和为零,各项分别为零,求出a,b即可;(2)用同角的余角相等和角平分线的意义即可;(3)利用角平分线的意义和互余两角的关系简单计算证明即可.详解:(1)∵(a﹣3)2+|b+4|=0,∴a﹣3=0,b+4=0,∴a=3,b=﹣4,∴A(3,0),B(0,﹣4),∴OA=3,OB=4,∵S四边形AOBC=16.∴0.5(OA+BC)×OB=16,∴0.5(3+BC)×4=16,∴BC=5,∵C是第四象限一点,CB⊥y轴,∴C(5,﹣4);(2)如图,延长CA,∵AF是∠CAE的角平分线,∴∠CAF=0.5∠CAE,∵∠CAE=∠OAG,∴∠CAF=0.5∠OAG,∵AD⊥AC,∴∠DAO+∠OAG=∠PAD+∠PAG=90°,∵∠AOD=90°,∴∠DAO+∠ADO=90°,∴∠ADO=∠OAG,∴∠CAF=0.5∠ADO,∵DP是∠ODA的角平分线,∴∠ADO=2∠ADP,∴∠CAF=∠ADP,∵∠CAF=∠PAG,∴∠PAG=∠ADP,∴∠APD=180°﹣(∠ADP+∠PAD)=180°﹣(∠PAG+∠PAD

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论