版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
苏教七年级下册期末数学测试真题经典一、选择题1.下列运算正确的是()A.(﹣a2b3)2=a4b6 B.a3•a5=a15C.(﹣a2)3=﹣a5 D.3a2﹣2a2=12.下列图形中,和不是内错角的是()A. B. C. D.3.方程组的解是A. B. C. D.4.如果一个正整数能表示为两个连续偶数的平方差,那么称这个正整数为“神秘数”.如4=22﹣02,12=42﹣22,20=62﹣42,因此4,12,20都是“神秘数”,则下面哪个数是“神秘数”()A.56 B.66 C.76 D.865.若关于x的不等式,所有整数解的和是15,则a的取值范围是()A. B. C. D.6.下列给出4个命题:①内错角相等;②对顶角相等;③对于任意实数,代数式总是正数;④若三条线段、、满足,则三条线段、、一定能组成三角形.其中正确命题的个数是()A.1个 B.2个 C.3个 D.4个7.有一列数:,若,从第2个数起,每一个数都等于“1与它前面的那个数的差的倒数”,那么的值为()A. B. C. D.38.如图,将一副三角板按如图放置,∠BAC=∠DAE=90°,∠B=45°,∠E=60°,则下列结论正确的有()个.①∠1=∠3;②∠CAD+∠2=180°;③如果∠2=30°,则有AC∥DE;④如果∠2=30°,则有BC∥AD.A.4 B.3 C.2 D.1二、填空题9.计算:________.10.“若两条直线不相交,则这两条直线平行”是_____命题.(填“真”或“假”)11.一个多边形的内角和是它的外角和的5倍,则这个多边形的边数为____________.12.记T=16k2-24k+11,则T的最小值为____________.13.已知是方程组的解,则=____________14.如图,相邻两线段互相垂直,甲、乙两人同时从点A处出发到点C处,甲沿着“A→B→C”的路线走,乙沿着“A→D→E→F→C→H→C的路线走,若他们的行走速度相同,则甲、乙两人谁先到C处?_____.15.已知a,b,c是△ABC的三边长,a=4,b=6,设三角形的周长是x,则x的取值范围是____.16.一副直角三角板叠放如图所示,现将含角的三角板固定不动,把含角的三角板绕直角顶点沿逆时针方向以的速度匀速旋转一周,当两块三角板的斜边平行时,则三角板旋转运动的时间为__________.17.计算(1)(2)(用乘法公式计算)(3)18.因式分解:(1)3x2+6xy+3y2(2)(x2+1)2-4x219.解方程组(1)(2)20.解不等式组.请结合题意,完成本题的解答:(1)解不等式①,得___________;(2)解不等式②,得___________;(3)把不等式①和②的解集在数轴上表示出来:(4)原不等式组的解集为___________.三、解答题21.如图1,△ABC中,点D在边AB上,DE//BC交AC于点E,点F是线段DE延长线上一点,连接FC.(1)有下列两个条件:①∠BCF+∠ADE=180°;②∠B=∠F,请从中选择一个你认为合适的条件,使结论CF//AB成立,并说明理由.你选择的条件是.(2)如图2,在(1)的条件下,连接BE,若∠ABE=40°,∠ACF=60°,求∠BEC的度数.22.陈老师所在的学校为加强学生的体育锻炼,需要购买若干个足球和篮球,他曾两次在某商场购买过足球和篮球,两次购买足球和篮球的数量和费用如下表:足球数量(个)篮球数量(个)总费用(元)第一次35550第二次67860(1)求足球和篮球的标价;(2)陈老师计划购买足球a个,篮球b个,可用资金最高为4000元;①如果计划购买足球和篮球共60个,最多购买篮球多少个?②如果可用资金恰好全部用完,且购买足球数量不超过篮球数量,则陈老师最多可购买足球________个.23.我市某包装生产企业承接了一批上海世博会的礼品盒制作业务,为了确保质量,该企业进行试生产.他们购得规格是的标准板材作为原材料,每张标准板材再按照裁法一或裁法二裁下A型与B型两种板材.如图甲,(单位:)(1)列出方程(组),求出图甲中a与b的值;(2)在试生产阶段,若将30张标准板材用裁法一裁剪,4张标准板材用裁法二裁剪,再将得到的A型与B型板材做侧面和底面,做成图乙的竖式与横式两种礼品盒.①两种裁法共产生A型板材________张,B型板材_______张;②已知①中的A型板材和B型板材恰好做成竖式有盖礼品盒x个,横式无盖礼品盒的y个,求x、y的值.24.如图,在中,与的角平分线交于点.(1)若,则;(2)若,则;(3)若,与的角平分线交于点,的平分线与的平分线交于点,,的平分线与的平分线交于点,则.25.直线与直线垂直相交于O,点A在射线上运动,点B在射线上运动.(1)如图1,已知、分别是和角的平分线,点A、B在运动的过程中,的大小是否会发生变化?若发生变化,请说明理由;若不发生变化,试求出其值;(2)如图2,延长至D,己知、的角平分线与的角平分线及其延长线相交于E、F.①求的度数.②在中,如果有一个角是另一个角的3倍,试求的度数.【参考答案】一、选择题1.A解析:A【分析】根据积的乘方与幂的乘方法则、同底数幂的乘法法则、合并同类项作法进行计算,判断即可.【详解】解:A、(-a2b3)2=a4b6,此选项符合题意;B、a3•a5=a8,此选项不符合题意;C、(-a2)3=-a6,此选项不符合题意;D、3a2-2a2=a2,此选项不符合题意;故选:A.【点睛】本题考查的是积的乘方与幂的乘方、同底数幂的乘法、合并同类项,掌握它们的运算法则是解题的关键.2.B解析:B【分析】根据内错角的定义:两条直线被第三条直线所截形成的角中,若两个角都在两直线的之间,并且在第三条直线(截线)的两旁,则这样一对角叫做内错角解答.【详解】解:A、∠1和∠2是内错角,故选项不合题意;B、∠1和∠2不是内错角,故选项符合题意;C、∠1和∠2是内错角,故选项不合题意;D、∠1和∠2是内错角,故选项不合题意;故选B.【点睛】本题考查了“三线八角”问题,确定三线八角的关键是从截线入手.对平面几何中概念的理解,一定要紧扣概念中的关键词语,要做到对它们正确理解,对不同的几何语言的表达要注意理解它们所包含的意义.3.A解析:A【详解】试题分析:,①+②得:3x=9,即x=3,将x=3代入①得:y=1,则方程组的解为.故选A考点:解二元一次方程组4.C解析:C【分析】利用“神秘数”定义判断即可.【详解】解:∵76=38×2=(20+18)(20-18)=202﹣182,∴76是“神秘数”,而其余各数均不能表示为两个连续偶数的平方差,故选:C.【点睛】此题考查了平方差公式,正确理解“神秘数”的定义是解本题的关键.5.A解析:A【详解】解析:本题考查的是不等式组的整数解的个数.首先求出不等式组的解集是,由于所有整数解的和是15,可得整数解是1、2、3、4、5,所以a的取值范围是;故答案为A.6.B解析:B【解析】①两直线平行,内错角相等,故错误;②对顶角相等,正确;③对于任意实数x,代数式=(x−3)2+1总是正数,正确;④若三条线段a、b、c满足a+b>c,则三条线段a、b、c一定能组成三角形,错误,故选B.点睛:本题考查了命题与定理的知识,解题的关键是利用平行线的性质、对顶角的性质、三角形的三边关系等知识分别判断后即可确定正确的选项.注意:要说明一个没命题的正确性,一般需要推理、论证,二判断一个命题是假命题,只需举出一个范例即可.7.C解析:C【分析】根据每一个数都等于1与它前面那个数的差的倒数多列举几个数字,找出规律即可.【详解】解:a1=,,a2=,,a3=3,,a4=,…,从上面的规律可以看出每三个数一循环,2021÷3=673......2,∴a2021=a2=,故选:C.【点睛】本题主要考查数字的变化规律,总结归纳数字的变化规律是解题的关键.8.B解析:B【分析】根据三角板的特点及平行线的判定定理即可依次判断.【详解】依题意可得∠1+∠2=90°,∠3+∠2=90°,∴∠1=∠3,①正确;∵∠CAD=∠1+∠2+∠3∴∠CAD+∠2=∠1+∠2+∠3+∠2=90°+90°=180°∴②正确;若∠2=30°,∴∠1=90°-∠2=60°∴∠1=∠E=60°∴AC∥DE,③正确;若∠2=30°,∴∠3=90°-∠2=60°∴∠1≠∠E∴BC,AD不平行,④错误;故选B.【点睛】此题主要考查三角板与平行线的判定,解题的关键是熟知平行线的判定定理.二、填空题9..【分析】利用单项式乘单项式的法则进行计算即可.【详解】解:故填:.【点睛】单项式相乘,把它们的系数、相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式.10.假【分析】若空间中两条直线不相交,则这两条直线平行,也有可能异面.【详解】解:若空间中两条直线不相交,则这两条直线平行,也有可能异面,故是假命题.故答案为:假.【点睛】本题考查命题真假的判断,考查学生的推理能力,属于基础题.11.12【分析】根据多边形的内角和公式(n-2)•180°与外角和定理列出方程,然后求解即可.【详解】设这个多边形是n边形,根据题意得,(n-2)•180°=5×360°,解得n=12.故答案为12.【点睛】本题考查了多边形的内角和公式与外角和定理,多边形的外角和与边数无关,任何多边形的外角和都是360°.12.2【分析】先利用完全平方公式进行配方,再利用平方的非负性即可得出答案;【详解】解:T=16K2-24k+11=(4k)2-24k+9+2=(4k-3)2+2∵(4k-3)2≥0,∴T的最小值为2,故答案为:2【点睛】本题考查了因式分解的应用,得出T=(4k-3)2+2是解题的关键.13.【分析】把代入到方程组中得到关于的方程组,求出的值,再求出的值即可.【详解】解:∵是方程组的解,∴,解得:,∴,故答案为:.【点睛】本难主要考查了二元一次方程组的解,解二元一次方程组和求代数式的值,明白解的定义和正确求出的值是解决此题的关键.14.A解析:甲、乙两人同时达到【分析】根据平移的性质可知;AD+EF+GH=CB,DE+FG+HI=AB,从而可得出问题的答案.【详解】由平移的性质可知:AD+EF+GH=CB,DE+FG+HI=AB,∴AB+BC=AD+EF+GH+DE+FG+HI,∴他们的行走的路程相等,∵他们的行走速度相同,∴他们所用时间相同,故答案为甲、乙两人同时达到.【点睛】本题考查了平移的性质,利用平移的性质发现AD+EF+GH=CB,DE+FG+HI=AB是解题的关键.15.12<x<20.【分析】根据三角形的三边关系求出c的取值,故可求出周长的取值.【详解】∵a,b,c是△ABC的三边长,a=4,b=6,∴6-4<c<6+4即2<c<10∴周长的范围为1解析:12<x<20.【分析】根据三角形的三边关系求出c的取值,故可求出周长的取值.【详解】∵a,b,c是△ABC的三边长,a=4,b=6,∴6-4<c<6+4即2<c<10∴周长的范围为12<x<20故答案为:12<x<20.【点睛】此题主要考查三角形三边关系的应用,解题的关键是熟知三角形的三边关系的特点.16.7秒或19秒【分析】依据两块三角板的斜边平行,即可得到旋转角的度数,再依据旋转的速度,即可得到三角板旋转运动的时间.【详解】如图1,,∵,,∴,∵∴,∴∵(秒),∴含角的解析:7秒或19秒【分析】依据两块三角板的斜边平行,即可得到旋转角的度数,再依据旋转的速度,即可得到三角板旋转运动的时间.【详解】如图1,,∵,,∴,∵∴,∴∵(秒),∴含角的三角形绕直角顶点按每秒的速度沿逆时针方向匀速旋转7秒时,两块三角板的斜边平行,如图2,,∵,∴,∵,∴,,∴绕点逆时针旋转的角度为,∵(秒).综上所述,三角形板转动的时间为7秒或秒.故答案为:7秒或秒.【点睛】本题考查了旋转的性质:旋转前后两图形全等,即对应相等相等,对应角相等;对应点与旋转中心的连线段的夹角等于旋转角.17.(1);(2)4;(3)【分析】(1)利用乘方的意义,零指数幂、负整数指数幂法则计算即可得到结果;(2)原式变形后,利用平方差公式计算即可得到结果;(3)利用多项式乘以多项式以及单项式乘以多解析:(1);(2)4;(3)【分析】(1)利用乘方的意义,零指数幂、负整数指数幂法则计算即可得到结果;(2)原式变形后,利用平方差公式计算即可得到结果;(3)利用多项式乘以多项式以及单项式乘以多项式法则展开,合并同类项计算即可;【详解】解:(1)原式=,,(2)原式=,=,=4,(3)原式=,=,=,【点睛】本题考查了整式的混合运算和0指数次幂、负指数次幂,熟练掌握整式混合运算法则及灵活运用乘法公式是解题关键.18.(1)3(x+y)2;(2)(x-1)2(x+1)2.【分析】(1)直接提取公因式3,再利用公式法分解因式进而得出答案;(2)直接利用平方差公式以及完全平方公式分解因式得出答案.【详解】解解析:(1)3(x+y)2;(2)(x-1)2(x+1)2.【分析】(1)直接提取公因式3,再利用公式法分解因式进而得出答案;(2)直接利用平方差公式以及完全平方公式分解因式得出答案.【详解】解:(1)3x2+6xy+3y2=3(x2+2xy+y2)=3(x+y)2;(2)原式=(x2+1-2x)(x2+1+2x)=(x-1)2(x+1)2.【点睛】本题主要考查了提取公因式法以及公式法分解因式,正确应用公式是解题关键.19.(1);(2).【分析】(1)方程组利用代入消元法求解即可;(2)方程组整理后,方程组利用加减消元法求解即可.【详解】解:(1)将②代入①,得解得:将代入②,得原方程组的解为:;解析:(1);(2).【分析】(1)方程组利用代入消元法求解即可;(2)方程组整理后,方程组利用加减消元法求解即可.【详解】解:(1)将②代入①,得解得:将代入②,得原方程组的解为:;(2)方程组化简为:①+②,得解得:将代入①得,解得:原方程组的解为:.【点睛】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.20.(1);(2);(3)见解析;(4)【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【详解】解:(1)解不等式①,去括号解析:(1);(2);(3)见解析;(4)【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【详解】解:(1)解不等式①,去括号,移项得:解得x>﹣2.(2)解不等式②,去括号得:解得;(3)把不等式①和②的解集在数轴上表示出来:(4)原不等式组的解集为.故答案为x>﹣2,,.【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.三、解答题21.(1)①∠BCF+∠ADE=180°,见解析;(2)100°.【分析】(1)选择的条件是:①∠BCF+∠ADE=180°,根据平行线的判定与性质即可完成证明;(2)如图3,过点E作EK∥AB,解析:(1)①∠BCF+∠ADE=180°,见解析;(2)100°.【分析】(1)选择的条件是:①∠BCF+∠ADE=180°,根据平行线的判定与性质即可完成证明;(2)如图3,过点E作EK∥AB,可得CF∥AB∥EK,再根据平行线的性质即可得结论.【详解】解:(1)选择的条件是:①∠BCF+∠ADE=180°,CF//AB,理由是:∵DE//BC,∴∠ADE=∠B,∵∠BCF+∠ADE=180°.∴∠BCF+∠B=180°.∴CF//AB;故答案为:①∠BCF+∠ADE=180°.(2)如图3,过点E作EK//AB,∴∠BEK=∠ABE=40°,∵CF//AB,∴CF//EK,∴∠CEK=∠ACF=60°,∴∠BEC=∠BEK+∠CEK=40°+60°=100°.【点睛】本题考查了平行线的判定与性质,解决本题的关键是掌握平行线的判定与性质.22.(1)足球的标价为50元,篮球的标价为80元;(2)①最多购买篮球33个;②24个【解析】【分析】(1)设足球的标价为x元,篮球的标价为y元,根据图表列出方程组求出x和y的值;(2)①设购买解析:(1)足球的标价为50元,篮球的标价为80元;(2)①最多购买篮球33个;②24个【解析】【分析】(1)设足球的标价为x元,篮球的标价为y元,根据图表列出方程组求出x和y的值;(2)①设购买篮球b个,根据从该商场一次性购买足球和篮球60个,且总费用不能超过4000元,列出不等式求最大正整数解即可;②设购买足球a个,篮球b个,根据可用资金恰好全部用完,且购买足球数量不超过篮球数量列出不等式,结合a、b均为整数求解即可.【详解】(1)设足球的标价为x元,篮球的标价为y元.根据题意,可得解得:答:足球的标价为50元,篮球的标价为80元;(2)①根据题意可得解得,因为b为整数,所以答:最多购买篮球33个②依题意有:50a+80b=4000且a≤b.所以b=50-a≥a,解得a≤.又b=50-a是整数,所以a是8的倍数,故a最大整数值是24,此时b=35,刚好用完4000元.答:陈老师最多可购买足球24个.【点睛】本题考查了一元一次不等式和二元一次方程组的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程求解,注意一定要考虑a、b均为整数这一隐含条件.23.(1)a=60,b=40;(2)①64,38;②x=7,y=12【分析】(1)由图示利用板材的长列出关于a、b的二元一次方程组求解;(2)①根据已知和图示计算出两种裁法共产生A型板材和B型板材解析:(1)a=60,b=40;(2)①64,38;②x=7,y=12【分析】(1)由图示利用板材的长列出关于a、b的二元一次方程组求解;(2)①根据已知和图示计算出两种裁法共产生A型板材和B型板材的张数;②根据竖式与横式礼品盒所需要的A、B两种型号板材的张数列出关于x、y的二元一次方程组,然后求解即可.【详解】解:(1)由题意得:,解得:,答:图甲中与的值分别为:60、40;(2)①由图示裁法一产生型板材为:,裁法二产生型板材为:,所以两种裁法共产生型板材为(张,由图示裁法一产生型板材为:,裁法二产生型板材为,,所以两种裁法共产生型板材为(张,故答案为:64,38;②根据题意竖式有盖礼品盒的个,横式无盖礼品盒的个,则型板材需要个,型板材需要个,所以,解得.【点睛】本题考查的知识点是二元一次方程组的应用,关键是根据已知先列出二元一次方程组求出a、b的值,根据图示列出算式以及关于x、y的二元一次方程组.24.(1)110(2)(90+n)(3)×90°+n°【分析】(1)根据角平分线的性质,结合三角形的内角和定理可得到角之间的关系,然后求解即可;(2)根据BO、CO分别是∠ABC与∠ACB的角平解析:(1)110(2)(90+n)(3)×90°+n°【分析】(1)根据角平分线的性质,结合三角形的内角和定理可得到角之间的关系,然后求解即可;(2)根据BO、CO分别是∠ABC与∠ACB的角平分线,用n°的代数式表示出∠OBC与∠OCB的和,再根据三角形的内角和定理求出∠BOC的度数;(3)根据规律直接计算即可.【详解】解:(1)∵∠A=40°,∴∠ABC+∠ACB=140°,∵点O是∠AB故答案为:110°;C与∠ACB的角平分线的交点,∴∠OBC+∠OCB=70°,∴∠BOC=110°.(2)∵∠A=n°,∴∠ABC+∠ACB=180°-n°,∵BO、CO分别是∠ABC与∠ACB的角平分线,∴∠OBC+∠OCB=∠ABC+∠ACB=(∠ABC+∠ACB)=(180°﹣n°)=90°﹣n°,∴∠BOC=180°﹣(∠OBC+∠OCB)=90°+n°.故答案为:(90+n);(3)由(2)得∠O=90°+n°,∵∠ABO的平分线与∠ACO的平分线交于点O1,∴∠O1BC=∠ABC,∠O1CB=∠ACB,∴∠O1=180°﹣(∠ABC+∠ACB)=180°﹣(180°﹣∠A)=×180°+n°,同理,∠O2=×180°+n°,∴∠On=×180°+n°,∴∠O2017=×180
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年湖南工艺美术职业学院单招职业倾向性测试题库附答案
- 2026年南充电影工业职业学院单招职业适应性测试题库及答案1套
- 2026年宁波职业技术学院单招职业倾向性测试题库必考题
- 2026年张家口职业技术学院单招职业倾向性测试必刷测试卷附答案
- 2026年唐山职业技术学院单招职业技能测试题库附答案
- 2026年秦皇岛工业职业技术学院单招职业适应性考试题库及答案1套
- 2026年天津仁爱学院单招职业倾向性考试必刷测试卷附答案
- 2026年黑龙江能源职业学院单招职业倾向性考试题库及答案1套
- 医院检验报告质量控制标准
- 2026年博尔塔拉职业技术学院单招职业适应性测试必刷测试卷附答案
- 行政事业单位财务与会计试题题库(附答案+解析)
- 公司外事接待标准培训
- 2019养老护理员试题及答案
- 天津公务员考试试题答案2025年
- 2024-2025学年河南省濮阳市九年级(上)期中英语试卷
- 灭火器的使用方法
- 贵州省2023年普通高中学业水平合格性考试思想政治考题及答案
- (2024版)人教版数学三年级上册第二单元混合运算全套课件
- 2025中国腰椎间盘突出症诊疗指南
- 义务教育语文课程标准(2025年版)考试题库及答案
- 巡查工作流程课件
评论
0/150
提交评论