2025年广东省深圳市四校发展联盟体高二数学第一学期期末教学质量检测模拟试题含解析_第1页
2025年广东省深圳市四校发展联盟体高二数学第一学期期末教学质量检测模拟试题含解析_第2页
2025年广东省深圳市四校发展联盟体高二数学第一学期期末教学质量检测模拟试题含解析_第3页
2025年广东省深圳市四校发展联盟体高二数学第一学期期末教学质量检测模拟试题含解析_第4页
2025年广东省深圳市四校发展联盟体高二数学第一学期期末教学质量检测模拟试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025年广东省深圳市四校发展联盟体高二数学第一学期期末教学质量检测模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.下列说法正确的个数有()个①在中,若,则②是,,成等比数列的充要条件③直线是双曲线的一条渐近线④函数的导函数是,若,则是函数的极值点A.0 B.1C.2 D.32.在中国共产党建党100周年之际,广安市某中学组织了“党史知识竞赛”活动,已知该校共有高中学生1000人,用分层抽样的方法从该校高中学生中抽取一个容量为25的样本参加活动,其中高二年级抽取了8人,则该校高二年级学生人数为()A.960 B.720C.640 D.3203.已知,若,则()A. B.C. D.4.已知椭圆的左右焦点分别为,,点B为短轴的一个端点,则的周长为()A.20 B.18C.16 D.95.俗话说“好货不便宜,便宜没好货”,依此判断,“不便宜”是“好货”的()A.必要不充分条件 B.充分不必要条件C.充要条件 D.既不充分也不必要条件6.从2,4中选一个数字,从1,3,5中选两个数字,组成无重复数字的三位数的个数为()A.48 B.36C.24 D.187.已知角的顶点与坐标原点重合,始边与x轴的非负半轴重合,角终边上有一点,为锐角,且,则()A. B.C. D.8.下列关于命题的说法错误的是A.命题“若,则”的逆否命题为“若,则”B.“”是“函数在区间上为增函数”的充分不必要条件C.命题“,使得”的否定是“,均有”D.“若为的极值点,则”的逆命题为真命题9.直线与椭圆交于两点,以线段为直径的圆恰好经过椭圆的左焦点,则此椭圆的离心率为()A B.C. D.10.抛物线的准线方程为()A B.C. D.11.正数a,b满足,若不等式对任意实数x恒成立,则实数m的取值范围是A. B.C. D.12.命题“存在,使得”的否定为()A.存在, B.对任意,C对任意, D.对任意,二、填空题:本题共4小题,每小题5分,共20分。13.已知圆锥的高为,体积为,则以该圆锥的母线为半径的球的表面积为______________.14.美学四大构件是:史诗、音乐、造型(绘画、建筑等)和数学.素描是学习绘画的必要一步,它包括明暗素描和结构素描,而学习几何体结构素描是学习素描最重要的一步.某同学在画切面圆柱体(用与圆柱底面不平行的平面去截圆柱,底面与截面之间的部分叫做切面圆柱体,原圆柱的母线被截面所截剩余的部分称为切面圆柱体的母线)的过程中,发现“切面”是一个椭圆,若切面圆柱体的最长母线与最短母线所确定的平面截切面圆柱体得到的截面图形是有一个底角为45°的直角梯形(如图所示),则该椭圆的离心率为_____.15.圆与圆的位置关系为______(填相交,相切或相离).16.已知数列{an}满足an+2=an+1-an(n∈N*),且a1=2,a2=3,则a2022的值为_________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知动点到点的距离与点到直线的距离相等.(1)求动点的轨迹方程;(2)若过点且斜率为的直线与动点的轨迹交于、两点,求三角形AOB的面积.18.(12分)已知椭圆上顶点与椭圆的左,右顶点连线的斜率之积为(1)求椭圆C的离心率;(2)若直线与椭圆C相交于A,B两点,,求椭圆C的标准方程19.(12分)已知函数.(1)讨论的单调性;(2)若,当时,恒成立,求实数的取值范围.20.(12分)如图,在四棱锥中,平面平面ABCD,底面ABCD是矩形,,,直线PA与CD所成角为60°.(1)求直线PD与平面ABCD所成角的正弦值;(2)求二面角的正弦值.21.(12分)如图,正方体的棱长为4,E,F分别是上的点,且.(1)求与平面所成角的正切值;(2)求证:.22.(10分)已知数列是公差为2的等差数列,它的前n项和为,且,,成等比数列(1)求的通项公式(2)求数列的前n项和

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】根据三角函数、等比数列、双曲线和导数知识逐项分析即可求解.【详解】①在中,则有,因,所以,又余弦函数在上单调递减,所以,故①正确,②当且时,此时,但是,,不成等比数列,故②错误,③由双曲线可得双曲线的渐近线为,故③错误,④“”是“是函数的极值点”的必要不充分条件,故④错误.故选:B.2、D【解析】由分层抽样各层成比例计算即可【详解】设高二年级学生人数为,则,解得故选:D3、B【解析】先求出的坐标,然后由可得,再根据向量数量积的坐标运算求解即可.【详解】因为,,所以,因为,所以,即,解得.故选:B4、B【解析】根据椭圆的定义求解【详解】由椭圆方程知,所以,故选:B5、A【解析】将“好货”与“不便宜”进行相互推理即可求得答案.【详解】根据题意,“好货”一定“不便宜”,但是“不便宜”不一定是“好货”,所以“不便宜”是“好货”的必要不充分条件.故选:A.6、B【解析】直接利用乘法分步原理分三步计算即得解.【详解】从中选一个数字,有种方法;从中选两个数字,有种方法;组成无重复数字的三位数,有个.故选:B7、C【解析】根据角终边上有一点,得到,再根据为锐角,且,求得,再利用两角差的正切函数求解.【详解】因为角终边上有一点,所以,又因为为锐角,且,所以,所以,故选:C8、D【解析】根据命题及其关系、充分条件与必要条件、导数在函数中应用、全称量词与存在量词等相关知识一一判断可得答案.【详解】解:A,由原命题与逆否命题的构成关系,可知A正确;B,当a=2>1时,函数在定义域内是单调递增函数,当函数定义域内是单调递增函数时,a>1.所以B正确;C,由于存在性命题的否定是全称命题,所以",使得"的否定是",均有,所以C正确;D,的根不一定是极值点,例如:函数,则=0,即x=0就不是极值点,所以“若为的极值点,则”的逆命题为假命题,故选D.【点睛】本题主要考查命题及其关系、充分条件与必要条件、导数在函数中应用、全称量词与存在量词等相关知识,需牢记并灵活运用相关知识.9、D【解析】根据题意作出示意图,根据圆的性质以及直线的倾斜角求解出的长度,再根据椭圆的定义求解出的关系,则椭圆离心率可求.【详解】设椭圆的左右焦点分别为,如下图:因为以线段为直径的圆恰好经过椭圆的左焦点,所以且,所以,又因为的倾斜角为,所以,所以为等边三角形,所以,所以,因为,所以,所以,所以,所以,故选:D.10、D【解析】根据抛物线方程求出,进而可得焦点坐标以及准线方程.【详解】由可得,所以焦点坐标为,准线方程为:,故选:D.11、A【解析】利用基本不等式求得的最小值,把问题转化为恒成立的类型,求解的最大值即可.【详解】,,且a,b为正数,,当且仅当,即时,,若不等式对任意实数x恒成立,则对任意实数x恒成立,即对任意实数x恒成立,,,故选:A【点睛】本题主要考查了恒成立问题,基本不等式求最值,二次函数求最值,属于中档题.12、D【解析】根据特称命题否定的方法求解,改变量词,否定结论.【详解】由题意可知命题“存在,使得”的否定为“对任意,”.故选:D.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】利用圆锥体积公式可求得圆锥底面半径,利用勾股定理可得母线长;根据球的表面积公式可求得结果.【详解】设圆锥的底面半径为,母线长为,圆锥体积,,,以为半径的球的表面积.故答案为:.14、【解析】设圆柱的底面半径为,由题意知,,椭圆的长轴长,短轴长为,可以求出的值,即可得离心率.【详解】设圆柱的底面半径为,依题意知,最长母线与最短母线所在截面如图所示从而因此在椭圆中长轴长,短轴长,,故答案为:15、相交【解析】求两圆圆心距,并与半径之和、半径之差的绝对值比较即可.【详解】圆的圆心为,半径为,圆的圆心为,半径为,∵,∴两圆相交.故答案为:相交.16、【解析】根据递推关系求出数列的前几项,得周期性,然后可得结论【详解】由题意,,,,,,所以数列是周期数列,周期为6,所以故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】小问1:由抛物线的定义可求得动点的轨迹方程;小问2:可知直线的方程为,设点、,将直线的方程与抛物线的方程联立,求出的值,利用抛物线的定义可求得的值,结合面积公式即可求解小问1详解】由题意点的轨迹是以为焦点,直线为准线的抛物线,所以,则,所以动点的轨迹方程是.【小问2详解】由已知直线的方程是,设、,由得,,所以,则,故,18、(1)(2)【解析】(1)根据题意,可知,可得,再根据椭圆的性质可得,由此即可求出离心率;(2)将直线与椭圆方程联立,由韦达定理得到,,再根据弦长公式,建立方程,即可求出的值,进而求出椭圆方程.【小问1详解】解:由题意可知,椭圆上顶点坐标为,左右顶点的坐标分别为、,∴,即,则又,∴,所以椭圆的离心率;【小问2详解】解:设,,由得:,∴,,,∴,解得,∴,满足,∴,∴椭圆C的方程为19、(1)答案见解析;(2).【解析】(1)求得,分、两种情况讨论,分析导数的符号变化,由此可得出函数的单调递增区间和递减区间;(2)利用参变量分离法可得出对任意的恒成立,构造函数,其中,利用导数求出函数在上的最小值,由此可求得实数的取值范围.【小问1详解】解:函数的定义域为,.因为,由,可得.①当时,由可得,由可得.此时,函数的单调递减区间为,单调递增区间为;②当时,由可得,由可得,此时,函数的单调递增区间为,单调递减区间为.综上所述,当时,函数的单调递减区间为,单调递增区间为;当时,函数单调递减区间为,单调递增区间为【小问2详解】解:当且时,由,可得,令,其中,.当时,,此时函数单调递减,当时,,此时函数单调递增,则,.20、(1)(2)【解析】(1),所以PA与AB所成的锐角或直角等于PA与CD所成角,然后过P在平面PAB内作,可得平面ABCD,从而可求出答案.(2)可证平面PAB,过B在平面PAB内作,连结CF,则是二面角的平面角,从而可求解.【小问1详解】因为,所以PA与AB所成的锐角或直角等于PA与CD所成角,可知,是正三角形.过P在平面PAB内作,垂足为E,因为平面平面ABCD,所以平面ABCD,是直线PD与平面ABCD所成角.在正中,,,所以,故直线PD与平面ABCD所成角的正弦值为.【小问2详解】因为,平面平面ABCD,平面平面ABCD又平面ABCD,所以平面PAB.又平面PAB.则过B在平面PAB内作,垂足为F,连结CF,又,则平面,又平面所以,所以是二面角的平面角.因为,,所以,从而所以二面角正弦值为.21、(1);(2)证明见解析.【解析】(1)在正方体中,平面,连接,则为与平面所成的角,在直角三角形,求出即可;(2)∵是正方体,又是空间垂直问题,∴易采用向量法,∴建立如图所示的空间直角坐标系,欲证,只须证,再用向量数量积公式求解即可.【小问1详解】在正方体中,平面,连接,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论