2025-2026学年云南省昆明市重点中学数学高二第一学期期末检测试题含解析_第1页
2025-2026学年云南省昆明市重点中学数学高二第一学期期末检测试题含解析_第2页
2025-2026学年云南省昆明市重点中学数学高二第一学期期末检测试题含解析_第3页
2025-2026学年云南省昆明市重点中学数学高二第一学期期末检测试题含解析_第4页
2025-2026学年云南省昆明市重点中学数学高二第一学期期末检测试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025-2026学年云南省昆明市重点中学数学高二第一学期期末检测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.若某群体中成员只用现金支付的概率为,既用现金支付也用非现金支付的概率为,则不用现金支付的概率为()A. B.C. D.2.设F是双曲线的左焦点,,P是双曲线右支上的动点,则的最小值为()A.5 B.C. D.93.设圆:和圆:交于A,B两点,则线段AB所在直线的方程为()A. B.C. D.4.椭圆与(0<k<9)的()A.长轴的长相等B.短轴的长相等C.离心率相等D.焦距相等5.下列说法中正确的是()A.存在只有4个面的棱柱 B.棱柱的侧面都是四边形C.正三棱锥的所有棱长都相等 D.所有几何体的表面都能展开成平面图形6.设集合,集合,则“”是“”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件7.在等差数列中,为其前项和,若.则()A. B.C. D.8.离心率为,长轴长为6的椭圆的标准方程是A. B.或C. D.或9.双曲线的左、右焦点分别为F1,F2,点P在双曲线上,下列结论不正确的是()A.该双曲线的离心率为B.该双曲线的渐近线方程为C.点P到两渐近线的距离的乘积为D.若PF1⊥PF2,则△PF1F2的面积为3210.某中学初中部共有110名教师,高中部共有150名教师,其性别比例如图所示,则该校男教师的人数为()A.167 B.137C.123 D.11311.直线的一个法向量为()A. B.C. D.12.抛物线的焦点到准线的距离为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知双曲线,的左、右焦点分别为、,且的焦点到渐近线的距离为1,直线与交于,两点,为弦的中点,若为坐标原点)的斜率为,,则下列结论正确的是____________①;②的离心率为;③若,则的面积为2;④若的面积为,则为钝角三角形14.已知点,平面过原点,且垂直于向量,则点到平面的距离是_________.15.已知向量,若,则实数___________.16.设分别是平面的法向量,若,则实数的值是________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知数列的前项和(1)求数列的通项公式;(2)求数列的前项和18.(12分)已知椭圆的离心率,左、右焦点分别为、,点在椭圆上,过的直线交椭圆于、两点.(1)求椭圆的标准方程;(2)求的面积的最大值.19.(12分)阿基米德(公元前年—公元前年)不仅是著名的物理学家,也是著名的数学家,他利用“逼近法”得到椭圆的面积除以圆周率等于椭圆的长半轴与短半轴的乘积.已知平面直角坐标系中,椭圆:的面积为,两焦点与短轴的一个顶点构成等边三角形.(1)求椭圆的标准方程;(2)过点的直线与交于不同的两点,求面积的最大值.20.(12分)已知函数.(1)求函数的单调区间;(2)求函数在上的最大值和最小值.21.(12分)已知等差数列满足:,.(1)求数列的通项公式;(2)若数列满足:,,求数列的通项公式.22.(10分)如图,在棱长为2的正方体ABCD﹣A1B1C1D1中,E,F分别为棱BC,CD的中点(1)求证:D1F平面A1EC1;(2)求直线AC1与平面A1EC1所成角的正弦值.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】利用对立事件的概率公式可求得所求事件的概率.【详解】由对立事件概率公式可知,该群体中的成员不用现金支付的概率为.故选:A.2、B【解析】由双曲线的的定义可得,于是将问题转化为求的最小值,由得出答案.【详解】设双曲线的由焦点为,且点A在双曲线的两支之间.由双曲线的定义可得,即所以当且仅当三点共线时,取得等号.故选:B3、A【解析】将两圆的方程相减,即可求两圆相交弦所在直线的方程.【详解】设,因为圆:①和圆:②交于A,B两点所以由①-②得:,即,故坐标满足方程,又过AB的直线唯一确定,即直线的方程为.故选:A4、D【解析】根据椭圆方程求得两个椭圆的,由此确定正确选项.【详解】椭圆与(0<k<9)的焦点分别在x轴和y轴上,前者a2=25,b2=9,则c2=16,后者a2=25-k,b2=9-k,则显然只有D正确故选:D5、B【解析】对于A、B:由棱柱的定义直接判断;对于C:由正三棱锥的侧棱长和底面边长不一定相等,即可判断;对于D:由球的表面不能展开成平面图形即可判断【详解】对于A:棱柱最少有5个面,则A错误;对于B:棱柱的所有侧面都是平行四边形,则B正确;对于C:正三棱锥的侧棱长和底面边长不一定相等,则C错误;对于D:球的表面不能展开成平面图形,则D错误故选:B6、A【解析】解不等式求集合,然后判断两个集合的关系【详解】,解得,故,可化为或,解得或,故,故“”是“”的充分不必要条件故选:A7、C【解析】利用等差数列的性质和求和公式可求得的值.【详解】由等差数列的性质和求和公式可得.故选:C.8、B【解析】试题解析:当焦点在x轴上:当焦点在y轴上:考点:本题考查椭圆的标准方程点评:解决本题的关键是焦点位置不同方程不同9、D【解析】根据双曲线的离心率、渐近线、点到直线距离公式、三角形的面积等知识来确定正确答案.【详解】由题意可知,a=3,b=4,c=5,,故离心率e,故A正确;由双曲线的性质可知,双曲线线的渐近线方程为y=±x,故B正确;设P(x,y),则P到两渐近线的距离之积为,故C正确;若PF1⊥PF2,则△PF1F2是直角三角形,由勾股定理得,由双曲线的定义可得|PF1|﹣|PF2|=2a=6(不妨取P在第一象限),∴2|PF1||PF2|=100﹣2|PF1||PF2|,解得|PF1||PF2|=32,可得,故D错误.故选:D10、C【解析】根据图形分别求出初中部和高中部男教师的人数,最后相加即可.【详解】初中部男教师的人数为110×(170%)=33;高中部男教师的人数为150×60%=90,∴该校男教师的人数为33+90=123.故选:C.11、B【解析】直线化为,求出直线的方向向量,因为法向量与方向向量垂直,逐项验证可得答案.【详解】直线的方向向量为,化为,直线的方向向量为,因为法向量与方向向量垂直,设法向量为,所以,由于,A错误;,故B正确;,故C错误;,故D错误;故选:B.12、B【解析】根据抛物线的几何性质可得选项.【详解】由得,所以,所以抛物线的焦点到准线的距离为1,故选:B.二、填空题:本题共4小题,每小题5分,共20分。13、②④【解析】由已知可得,可求,,从而判断①②,求出△的面积可判断③,设,,利用面积求出点的坐标,再求边长,求出可判断④【详解】解:设,,,,可得,,两式相减可得,由题意可得,且,,,,,,故②正确;的焦点到渐近线的距离为1,设到渐近线的距离为,则,即,,故①错误,,若,不妨设在右支上,,又,,则的面积为,故③不正确;设,,,,将代入双曲线,得,,根据双曲线的对称性,不妨取点的坐标为,,,,,为钝角,为钝角三角形.故④正确故答案为:②④14、【解析】确定,,利用点到平面的距离为,即可求得结论.【详解】由题意,,,设与的夹角为,则所以点到平面的距离为故答案为:15、2【解析】利用向量平行的条件直接解出.【详解】因为向量,且,所以,解得:2故答案为:216、4【解析】根据分别是平面的法向量,且,则有求解.【详解】因为分别是平面的法向量,且所以所以解得故答案为:4【点睛】本题主要考查空间向量垂直,还考查了运算求解的能力,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)利用与的关系求数列的通项公式;(2)利用错位相减法求和即可.【小问1详解】因为,故当时,,两式相减得,又由题设可得,从而的通项公式为:;【小问2详解】因为,,两式相减得:所以.18、(1)(2)【解析】(1)利用椭圆的离心率、点在椭圆上以及得到的方程组,进而得到椭圆的标准方程;(2)设出直线方程,联立直线和椭圆方程,得到关于的一元二次方程,利用根与系数的关系和三角形的面积公式得到三角形的面积,再利用基本不等式求其最值.【小问1详解】解:由题可得,且,将点代入椭圆方程,得,解得,,即椭圆方程为;【小问2详解】解:由(1)可得,,设:,联立,消去,得,设,,则,则所以,当且仅当,即时取等号,故的面积的最大值为.19、(1);(2).【解析】(1)根据题意计算得到,得到椭圆方程.(2)设直线的方程为,联立方程,根据韦达定理得到,,表示出,解得答案.【详解】(1)依题意有解得所以椭圆的标准方程是.(2)由题意直线的斜率不能为,设直线的方程为,由方程组得,设,,所以,,所以,所以,令(),则,,因为在上单调递增,所以当,即时,面积取得最大值为.【点睛】本题考查了椭圆方程,椭圆内三角形面积的最值问题,意在考查学生的计算能力和综合应用能力.20、(1)单调增区间,单调减区间(2)最大值,最小值【解析】根据导函数分析函数单调性,在闭区间内的最值【小问1详解】时,;时,单调增区间,单调减区间【小问2详解】由(1)可知,在上单调递增,在上单调递减,所以最大值为又;故最小值为021、(1);(2).【解析】(1)由题设条件,结合等差数列通项公式求基本量d,进而写出通项公式.(2)由(1)得,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论