版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025-2026学年安徽省天长市关塘中学数学高二第一学期期末教学质量检测模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.过点,的直线的斜率等于1,则m的值为()A.1 B.4C.1或3 D.1或42.执行如图所示的程序框图,则输出的的值是()A. B.C. D.3.已知两条直线:,:,且,则的值为()A.-2 B.1C.-2或1 D.2或-14.2013年9月7日,总书记在哈萨克斯坦纳扎尔巴耶夫大学发表演讲在谈到环境保护问题时提出“绿水青山就是金山银山”这一科学论新.某市为了改善当地生态环境,2014年投入资金160万元,以后每年投入资金比上一年增加20万元,从2021年开始每年投入资金比上一年增加10%,到2024年底该市生态环境建设投资总额大约为()(其中,,)A.2559万元 B.2969万元C.3005万元 D.3040万元5.抛物线的准线方程为()A. B.C. D.6.双曲线的渐近线方程和离心率分别是A. B.C. D.7.若的解集是,则等于()A.-14 B.-6C.6 D.148.双曲线的离心率的取值范围为,则实数的取值范围为()A. B.C. D.9.函数的最小值是()A.2 B.4C.5 D.610.抛物线的准线方程为()A B.C. D.11.圆与圆的位置关系是()A.外离 B.外切C.相交 D.内切12.如图,在长方体中,,E,F分别为的中点,则异面直线与所成角的余弦值为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.定义在上的函数满足:有成立且,则不等式的解集为__________14.“直线和直线垂直”的充要条件是______15.若抛物线上一点到轴的距离是4,则点到该抛物线焦点的距离是___________.16.已知双曲线:,,是其左右焦点.圆:,点为双曲线右支上的动点,点为圆上的动点,则的最小值是________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图是一个正三棱柱(以为底面)被一平面所截得到的几何体,截面为ABC.已知,,M为AB中点.(1)证明:平面;(2)求此几何体的体积.18.(12分)已知数列是首项为1,公差不为0的等差数列,且成等比数列.数列的前项的和为,且满足.(1)求数列的通项公式;(2)求数列的前项和.19.(12分)已知椭圆C:的上顶点与椭圆的左右顶点连线的斜率之积为-.(1)求椭圆C的离心率(2)点M(,)在椭圆C上,椭圆的左顶点为D,上顶点为B,点A的坐标为(1,0),过点D的直线L与椭圆在第一象限交于点P,与直线AB交于点Q设L的斜率为k,若,求k的值.20.(12分)在三角形ABC中,三个顶点的坐标分别为,,,且D为AC的中点.(1)求三角形ABC的外接圆M方程;(2)求直线BD与外接圆M相交产生的相交弦的长度.21.(12分)已知关于x的不等式,.(1)若,求不等式的解集;(2)若不等式的解集为R,求k的取值范围.22.(10分)如图,在四棱锥P—ABCD中,底面ABCD为矩形,平面PAD⊥平面ABCD,PA⏊PD,E,F分别为AD,PB的中点.求证:(1)EF//平面PCD;(2)平面PAB⏊平面PCD
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】解方程即得解.【详解】由题得.故选:A【点睛】本题主要考查斜率的计算,意在考查学生对该知识的理解掌握水平.2、C【解析】由题意确定流程图的功能,然后计算其输出值即可.【详解】运行程序,不满足,,,不满足,,,不满足,,,不满足,,,不满足,,,不满足,,,满足,利用裂项求和可得:.故选:C.【点睛】识别、运行程序框图和完善程序框图的思路:(1)要明确程序框图的顺序结构、条件结构和循环结构(2)要识别、运行程序框图,理解框图所解决的实际问题(3)按照题目的要求完成解答并验证3、B【解析】两直线平行,倾斜角相等,斜率均不存在或斜率存在且相等,据此即可求解.【详解】:,:斜率不可能同时不存在,∴和斜率相等,则或,∵m=-2时,和重合,故m=1.另解:,故m=1.故选:B.4、B【解析】前7年投入资金可看成首项为160,公差为20的等差数列,后4年投入资金可看成首项为260,公比为1.1的等比数列,分别求和,即可求出所求【详解】2014年投入资金160万元,以后每年投入资金比上一年增加20万元,成等差数列,则2020年投入资金万元,年共7年投资总额为,从2021年开始每年投入资金比上一年增加,则从2021年到2024年投入资金成首项为,公比为1.1,项数为4的等比数列,故从2021年到2024年投入总资金为,故到2024年底该市生态环境建设投资总额大约为万元故选:5、A【解析】将抛物线的方程化成标准形式,即可得到答案;【详解】抛物线的方程化成标准形式,准线方程为,故选:A.6、A【解析】先根据双曲线的标准方程,求得其特征参数的值,再利用双曲线渐近线方程公式和离心率定义分别计算即可.【详解】双曲线的,双曲线的渐近线方程为,离心率为,故选A.【点睛】本题主要考查双曲线的渐近线及离心率,属于简单题.离心率的求解在圆锥曲线的考查中是一个重点也是难点,一般求离心率有以下几种情况:①直接求出,从而求出;②构造的齐次式,求出;③采用离心率的定义以及圆锥曲线的定义来求解;④根据圆锥曲线的统一定义求解7、A【解析】由一元二次不等式的解集,结合根与系数关系求参数a、b,即可得.【详解】∵的解集为,∴-5和2为方程的两根,∴有,解得,∴.故选:A.8、C【解析】分析可知,利用双曲线的离心率公式可得出关于的不等式,即可解得实数的取值范围.【详解】由题意有,,则,解得:故选:C.9、C【解析】结合基本不等式求得所求的最小值.【详解】,,当且仅当时等号成立.故选:C10、D【解析】根据抛物线方程求出,进而可得焦点坐标以及准线方程.【详解】由可得,所以焦点坐标为,准线方程为:,故选:D.11、C【解析】利用圆心距与半径的关系确定正确选项.【详解】圆的圆心为,半径为,圆的圆心为,半径为,圆心距为,,所以两圆相交.故选:C12、A【解析】利用平行线,将异面直线的夹角问题转化为共面直线的夹角问题,再解三角形.【详解】取BC中点H,BH中点I,连接AI、FI、,因为E为中点,在长方体中,,所以四边形是平行四边形,所以所以,又因为F为的中点,所以,所以,则即为异面直线与所成角(或其补角).设AB=BC=4,则,则,,根据勾股定理:,,,所以是等腰三角形,所以.故B,C,D错误.故选:A.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】由,判断出函数的单调性,利用单调性解即可【详解】设,又有成立,函数,即是上的增函数,,即,,故答案为:14、或【解析】利用直线一般式方程表示垂直的方法求解.【详解】因为直线和直线垂直,所以,解得或;故答案为:或.15、5【解析】根据抛物线的定义知点P到焦点距离等于到准线的距离即可求解.【详解】因为抛物线方程为,所以准线方程,所以点到准线的距离为,故点到该抛物线焦点的距离.故答案为:16、##【解析】利用双曲线定义,将的最小值问题转化为的最小值问题,然后结合图形可解.【详解】由题设知,,,,圆的半径由点为双曲线右支上的动点知∴∴.故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析(2)【解析】(1)取的中点,连接,,可得四边形为平行四边形,从而可得,然后证明平面,从而可证明.(2)过作截面平面,分别交,于,,连接,作于,由所求几何体体积为从而可得答案.【小问1详解】如图,取的中点,连接,,因为,分别是,的中点.所以且又因为,,所以且,故四边形为平行四边形,所以.因为正三角形,是的中点,所以,又因为平面,所以,又,所以平面又,所以平面.【小问2详解】如图,过作截面平面,分别交,于,,连接,作于,因为平面平面,所以,结合直三棱柱的性质,则平面因为,,,所以.所以所求几何体体积为18、(1),(2)【解析】(1)设数列公差为,由成等比数列求得,可得.利用求得;(2)利用错位相减求和即可.【小问1详解】设数列公差为,由成等比数列有:,解得:,所以,数列,当即,,解得:,当时,有,所以,得:.又,所以数列为以为首项,公比为的等比数列,所以数列的通项公式为:.【小问2详解】,,,得,,化简得:.19、(1)(2)1【解析】(1)根据椭圆的上顶点与椭圆的左右顶点连线的斜率之积为-,由求解;(2)根据点M(,)在椭圆C上,顶点,再由,求得椭圆方程,由,结合,得到,设直线方程为,与椭圆方程联立,求得点P的坐标,再由,求得Q的坐标,代入求解.【小问1详解】解:设椭圆C:的上顶点为,左顶点为,右顶点为,因为椭圆的上顶点与椭圆的左右顶点连线的斜率之积为-,所以,即,又所以,解得;【小问2详解】因为点M(,)在椭圆C上,所以,又,解得,所以椭圆方程为,,则,因为,所以,又,所以,则,设,则,当时,则,不合题意;当时,设直线方程为,与题意方程联立,消去y得:则,所以,则,因为,由,得,因为,所以,化简得,因,则.20、(1);(2).【解析】(1)根据题意,结合直角三角形外接圆的圆心为斜边的中点,即可求解;(2)根据题意,结合点到直线的距离,以及弦长公式,即可求解.【小问1详解】根据题意,易知是以BC为斜边的直角三角形,故外接圆圆心是B,C的中点,半径为BC长度的一半为,故三角形ABC的外接圆M方程为.【小问2详解】因为D为AC的中点,所以易求.故直线BD的方程为,圆心到直线的距离,故相交弦的长度为.21、(1)(2)【解析】(1)因式分解后可求不等式的解集.(2)就分类讨论后可得的取值范围.【小问1详解】时,原不等式即为,其解为.【小问2详解】不等式的解集为R,当时,则有,解得,综上,.22、(1)见解析;(2)见解析【解析】(1)取BC中点G,连结EG,FG,推导出,,从而平面平面,由此能得出结论;(2)推导出,从而平面PAD,即得,结合得出平面P
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年国网河南省电力公司招聘高校毕业生第一批考试笔试考试参考题库及答案解析
- 2025中国石化销售股份有限公司贵州黔南石油分公司招聘2人考试笔试备考题库及答案解析
- 2025广东南粤银行长沙分行招聘考试笔试备考题库及答案解析
- 2025北京交响乐团第二次招聘3人笔试考试参考题库及答案解析
- 2026中国中医科学院广安门医院招聘国内高校应届毕业生(提前批)20人考试笔试模拟试题及答案解析
- 2025广东中山市港口镇新港社区招聘合同制工作人员1人笔试考试备考题库及答案解析
- 保洁周检查表
- 初三英语下学期期末模拟试题带完整参考答案
- 部编版初一下册数学期末题库带答案及解析
- 高二地理上册期末试题附答案
- 西安交通大学考研真题-888管理学基础
- 财务用发票分割单原始凭证 发票分割单范本
- 国开电大《人文英语3》一平台机考总题库珍藏版
- 东南大学高数实验报告
- 纪念129运动课件
- 离婚登记申请受理回执单模板
- 电缆线路运行检查管理制度
- 梯笼式安全爬梯安全要求
- 防排烟风管安装施工方案
- 【高分复习笔记】郝大海《社会调查研究方法》(第2版)笔记和课后习题详解
- GB/T 2934-2007联运通用平托盘主要尺寸及公差
评论
0/150
提交评论