版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
一、解答题1.如图1,点是第二象限内一点,轴于,且是轴正半轴上一点,是x轴负半轴上一点,且.(1)(),()(2)如图2,设为线段上一动点,当时,的角平分线与的角平分线的反向延长线交于点,求的度数:(注:三角形三个内角的和为)(3)如图3,当点在线段上运动时,作交于的平分线交于,当点在运动的过程中,的大小是否变化?若不变,求出其值;若变化,请说明理由.2.如图,已知直线射线CD,.P是射线EB上一动点,过点P作PQEC交射线CD于点Q,连接CP.作,交直线AB于点F,CG平分.(1)若点P,F,G都在点E的右侧,求的度数;(2)若点P,F,G都在点E的右侧,,求的度数;(3)在点P的运动过程中,是否存在这样的情形,使?若存在,求出的度数;若不存在,请说明理由.3.如图1,把一块含30°的直角三角板ABC的BC边放置于长方形直尺DEFG的EF边上.(1)根据图1填空:∠1=°,∠2=°;(2)现把三角板绕B点逆时针旋转n°.①如图2,当n=25°,且点C恰好落在DG边上时,求∠1、∠2的度数;②当0°<n<180°时,是否会存在三角板某一边所在的直线与直尺(有四条边)某一边所在的直线垂直?如果存在,请直接写出所有n的值和对应的那两条垂线;如果不存在,请说明理由.4.如图,∠EBF=50°,点C是∠EBF的边BF上一点.动点A从点B出发在∠EBF的边BE上,沿BE方向运动,在动点A运动的过程中,始终有过点A的射线AD∥BC.(1)在动点A运动的过程中,(填“是”或“否”)存在某一时刻,使得AD平分∠EAC?(2)假设存在AD平分∠EAC,在此情形下,你能猜想∠B和∠ACB之间有何数量关系?并请说明理由;(3)当AC⊥BC时,直接写出∠BAC的度数和此时AD与AC之间的位置关系.5.已知:直线AB∥CD,直线MN分别交AB、CD于点E、F,作射线EG平分∠BEF交CD于G,过点F作FH⊥MN交EG于H.(1)当点H在线段EG上时,如图1①当∠BEG=时,则∠HFG=.②猜想并证明:∠BEG与∠HFG之间的数量关系.(2)当点H在线段EG的延长线上时,请先在图2中补全图形,猜想并证明:∠BEG与∠HFG之间的数量关系.6.已知AB//CD.(1)如图1,E为AB,CD之间一点,连接BE,DE,得到∠BED.求证:∠BED=∠B+∠D;(2)如图,连接AD,BC,BF平分∠ABC,DF平分∠ADC,且BF,DF所在的直线交于点F.①如图2,当点B在点A的左侧时,若∠ABC=50°,∠ADC=60°,求∠BFD的度数.②如图3,当点B在点A的右侧时,设∠ABC=α,∠ADC=β,请你求出∠BFD的度数.(用含有α,β的式子表示)7.小学的时候我们已经学过分数的加减法法则:“同分母分数相加减,分母不变,分子相加减;异分母分数相加减,先通分,转化为同分母分数,再加减.”如:,反之,这个式子仍然成立,即:.(1)问题发现观察下列等式:①,②,③,…,猜想并写出第个式子的结果:.(直接写出结果,不说明理由)(2)类比探究将(1)中的的三个等式左右两边分别相加得:,类比该问题的做法,请直接写出下列各式的结果:①;②;(3)拓展延伸计算:.8.阅读下面的文字,解答问题大家知道是无理数,而无理数是无限不循环小数,因此的小数部分我们不可能全部地写出来,于是小明用﹣1来表示的小数部分,你同意小明的表示方法吗?事实上,小明的表示方法是有道理的,因为的整数部分是1,将这个数减去其整数部分,差就是小数部分.又例如:<<,即2<<3,∴的整数部分为2,小数部分为(﹣2)请解答:(1)整数部分是,小数部分是.(2)如果的小数部分为a,的整数部分为b,求|a﹣b|+的值.(3)已知:9+=x+y,其中x是整数,且0<y<1,求x﹣y的相反数.9.数学家华罗庚在一次出国访问途中,看到飞机上邻座的乘客阅读的杂志上有一道智力题:求59319的立方根.华罗庚脱口而出:39.众人感觉十分惊奇,请华罗庚给大家解读其中的奥秘.你知道怎样迅速准确的计算出结果吗?请你按下面的问题试一试:①,又,,∴能确定59319的立方根是个两位数.②∵59319的个位数是9,又,∴能确定59319的立方根的个位数是9.③如果划去59319后面的三位319得到数59,而,则,可得,由此能确定59319的立方根的十位数是3因此59319的立方根是39.(1)现在换一个数195112,按这种方法求立方根,请完成下列填空.①它的立方根是_______位数.②它的立方根的个位数是_______.③它的立方根的十位数是__________.④195112的立方根是________.(2)请直接填写结果:①________.②________.10.下列等式:,,,将以上三个等式两边分别相加得:.(1)观察发现:__________.(2)初步应用:利用(1)的结论,解决以下问题“①把拆成两个分子为1的正的真分数之差,即;②把拆成两个分子为1的正的真分数之和,即;(3)定义“”是一种新的运算,若,,,求的值.11.阅读材料,解答问题:如果一个四位自然数,十位数字是千位数字的2倍与百位数字的差,个位数字是千位数字的2倍与百位数字的和,则我们称这个四位数“依赖数”,例如,自然数2135,其中3=2×2﹣1,5=2×2+1,所以2135是“依赖数”.(1)请直接写出最小的四位依赖数;(2)若四位依赖数的后三位表示的数减去百位数字的3倍得到的结果除以7余3,这样的数叫做“特色数”,求所有特色数.(3)已知一个大于1的正整数m可以分解成m=pq+n4的形式(p≤q,n≤b,p,q,n均为正整数),在m的所有表示结果中,当nq﹣np取得最小时,称“m=pq+n4”是m的“最小分解”,此时规定:F(m)=,例:20=1×4+24=2×2+24=1×19+14,因为1×19﹣1×1>2×4﹣2×1>2×2﹣2×2,所以F(20)==1,求所有“特色数”的F(m)的最大值.12.若一个四位数t的前两位数字相同且各位数字均不为0,则称这个数为“前介数”;若把这个数的个位数字放到前三位数字组成的数的前面组成一个新的四位数,则称这个新的四位数为“中介数”;记一个“前介数”t与它的“中介数”的差为P(t).例如,5536前两位数字相同,所以5536为“前介数”;则6553就为它的“中介数”,P(5536)=5536﹣6553=-1017.(1)P(2215)=,P(6655)=.(2)求证:任意一个“前介数”t,P(t)一定能被9整除.(3)若一个千位数字为2的“前介数”t能被6整除,它的“中介数”能被2整除,请求出满足条件的P(t)的最大值.13.如图,在长方形中,为平面直角坐标系的原点,点的坐标为,点的坐标为且、满足,点在第一象限内,点从原点出发,以每秒2个单位长度的速度沿着的线路移动.(1)点的坐标为___________;当点移动5秒时,点的坐标为___________;(2)在移动过程中,当点到轴的距离为4个单位长度时,求点移动的时间;(3)在的线路移动过程中,是否存在点使的面积是20,若存在直接写出点移动的时间;若不存在,请说明理由.14.已知,AB∥CD,点E在CD上,点G,F在AB上,点H在AB,CD之间,连接FE,EH,HG,∠AGH=∠FED,FE⊥HE,垂足为E.(1)如图1,求证:HG⊥HE;(2)如图2,GM平分∠HGB,EM平分∠HED,GM,EM交于点M,求证:∠GHE=2∠GME;(3)如图3,在(2)的条件下,FK平分∠AFE交CD于点K,若∠KFE:∠MGH=13:5,求∠HED的度数.15.在平面直角坐标系中,已知线段,点的坐标为,点的坐标为,如图1所示.(1)平移线段到线段,使点的对应点为,点的对应点为,若点的坐标为,求点的坐标;(2)平移线段到线段,使点在轴的正半轴上,点在第二象限内(与对应,与对应),连接如图2所示.若表示△BCD的面积),求点、的坐标;(3)在(2)的条件下,在轴上是否存在一点,使表示△PCD的面积)?若存在,求出点的坐标;若不存在,请说明理由.16.对于平面直角坐标系xOy中的任意两点M(x1,y1),N(x2,y2),给出如下定义:将|x1﹣x2|称为点M,N之间的“横长”,|y1﹣y2|称为点M,N之间的纵长”,点M与点N的“横长”与“纵长”之和称为“折线距离”,记作d(M,N)=|x1﹣x2|+|y1﹣y2|“.例如:若点M(﹣1,1),点N(2,﹣2),则点M与点N的“折线距离”为:d(M,N)=|﹣1﹣2|+|1﹣(﹣2)|=3+3=6.根据以上定义,解决下列问题:已知点P(3,2).(1)若点A(a,2),且d(P,A)=5,求a的值;(2)已知点B(b,b),且d(P,B)<3,直接写出b的取值范围;(3)若第一象限内的点T与点P的“横长”与“纵长”相等,且d(P,T)>5,简要分析点T的横坐标t的取值范围.17.如图1,以直角的直角顶点为原点,以,所在直线为轴和轴建立平面直角坐标系,点,,并且满足.(1)直接写出点,点的坐标;(2)如图1,坐标轴上有两动点,同时出发,点从点出发沿轴负方向以每秒2个单位长度的速度匀速运动,点从点出发沿轴正方向以每秒个单位长度的速度匀速运动,当点到达点整个运动随之结束;线段的中点的坐标是,设运动时间为秒.是否存在,使得与的面积相等?若存在,求出的值;若不存在,说明理由;(3)如图2,在(2)的条件下,若,点是第二象限中一点,并且平分,点是线段上一动点,连接交于点,当点在上运动的过程中,探究,,之间的数量关系,直接写出结论.18.如图所示,在直角坐标系中,已知,,将线段平移至,连接、、、,且,点在轴上移动(不与点、重合).(1)直接写出点的坐标;(2)点在运动过程中,是否存在的面积是的面积的3倍,如果存在请求出点的坐标,如果不存在请说明理由;(3)点在运动过程中,请写出、、三者之间存在怎样的数量关系,并说明理由.19.两个两位数的和是68,在较大的两位数的右边接着写较小的两位数,得到一个四位数;在较大的两位数的左边写上较小的两位数,也得到一个四位数.已知前一个四位数比后一个四位数大990.若设较大的两位数为x,较小的两位数为y,回答下列问题:(1)可得到下列哪一个方程组?A.B.C.D.(2)解所确定的方程组,求这两个两位数.20.(1)阅读下列材料并填空:对于二元一次方程组,我们可以将x,y的系数和相应的常数项排成一个数表,求得的一次方程组的解,用数表可表示为.用数表可以简化表达解一次方程组的过程如下,请补全其中的空白:从而得到该方程组的解为x=,y=.(2)仿照(1)中数表的书写格式写出解方程组的过程.21.已知:用3辆A型车和2辆B型车载满货物一次可运货17吨;用2辆A型车和3辆B型车载满货物一次可运货l8吨,某物流公刊现有35吨货物,计划同时租用A型车a辆,B型车b辆,一次运完,且恰好每辆车都载满货物.根据以上信息,解答下列问题:(1)l辆A型车和l辆B型车都载满货物一次可分别运货多少吨?(2)请你帮该物流公司设计租车方案;(3)若A型车每辆需租金200元/次,B型车每辆需租金240元/次,请选出最省钱的租车方案,并求出最少租车费.22.学校计划为“我和我的祖国”演讲比赛购买奖品.已知购买3个A奖品和2个B奖品共需120元;购买5个A奖品和4个B奖品共需210元.(1)求A,B两种奖品的单价;(2)学校准备购买A,B两种奖品共30个,且A奖品的数量不少于B奖品数量的.请设计出最省钱的购买方案,并说明理由.23.我市某包装生产企业承接了一批上海世博会的礼品盒制作业务,为了确保质量,该企业进行试生产.他们购得规格是的标准板材作为原材料,每张标准板材再按照裁法一或裁法二裁下A型与B型两种板材.如图甲,(单位:)(1)列出方程(组),求出图甲中a与b的值;(2)在试生产阶段,若将30张标准板材用裁法一裁剪,4张标准板材用裁法二裁剪,再将得到的A型与B型板材做侧面和底面,做成图乙的竖式与横式两种礼品盒.①两种裁法共产生A型板材________张,B型板材_______张;②已知①中的A型板材和B型板材恰好做成竖式有盖礼品盒x个,横式无盖礼品盒的y个,求x、y的值.24.如果3个数位相同的自然数m,n,k满足:m+n=k,且k各数位上的数字全部相同,则称数m和数n是一对“黄金搭档数”.例如:因为25,63,88都是两位数,且25+63=88,则25和63是一对“黄金搭档数”.再如:因为152,514,666都是三位数,且152+514=666,则152和514是一对“黄金搭档数”.(1)分别判断87和12,62和49是否是一对“黄金搭档数”,并说明理由;(2)已知两位数s和两位数t的十位数字相同,若s和t是一对“黄金搭档数”,并且s与t的和能被7整除,求出满足题意的s.25.对x,y定义一种新运算T,规定:T(x,y)=ax+2by﹣1(其中a、b均为非零常数),这里等式右边是通常的四则运算,例如:T(0,1)=a•0+2b•1﹣1=2b﹣1.(1)已知T(1,﹣1)=﹣2,T(4,2)=3.①求a,b的值;②若关于m的不等式组恰好有2个整数解,求实数p的取值范围;(2)若T(x,y)=T(y,x)对任意实数x,y都成立(这里T(x,y)和T(y,x)均有意义),则a,b应满足怎样的关系式?26.阅读材料:如果x是一个有理数,我们把不超过x的最大整数记作[x].例如,[3.2]=3,[5]=5,[-2.1]=-3.那么,x=[x]+a,其中0≤a<1.例如,3.2=[3.2]+0.2,5=[5]+0,-2.1=[-2.1]+0.9.请你解决下列问题:(1)[4.8]=,[-6.5]=;(2)如果[x]=3,那么x的取值范围是;(3)如果[5x-2]=3x+1,那么x的值是;(4)如果x=[x]+a,其中0≤a<1,且4a=[x]+1,求x的值.27.材料1:我们把形如(、、为常数)的方程叫二元一次方程.若、、为整数,则称二元一次方程为整系数方程.若是,的最大公约数的整倍数,则方程有整数解.例如方程都有整数解;反过来也成立.方程都没有整数解,因为6,3的最大公约数是3,而10不是3的整倍数;4,2的最大公约数是2,而1不是2的整倍数.材料2:求方程的正整数解.解:由已知得:……①设(为整数),则……②把②代入①得:.所以方程组的解为,根据题意得:.解不等式组得0<<.所以的整数解是1,2,3.所以方程的正整数解是:,,.根据以上材料回答下列问题:(1)下列方程中:①,②,③,④,⑤,⑥.没有整数解的方程是(填方程前面的编号);(2)仿照上面的方法,求方程的正整数解;(3)若要把一根长30的钢丝截成2长和3长两种规格的钢丝(两种规格都要有),问怎样截才不浪费材料?你有几种不同的截法?(直接写出截法,不要求解题过程)28.某加工厂用52500元购进A、B两种原料共40吨,其中原料A每吨1500元,原料B每吨1000元.由于原料容易变质,该加工厂需尽快将这批原料运往有保质条件的仓库储存.经市场调查获得以下信息:①将原料运往仓库有公路运输与铁路运输两种方式可供选择,其中公路全程120千米,铁路全程150千米;②两种运输方式的运输单价不同(单价:每吨每千米所收的运输费);③公路运输时,每吨每千米还需加收1元的燃油附加费;④运输还需支付原料装卸费:公路运输时,每吨装卸费100元;铁路运输时,每吨装卸费220元.(1)加工厂购进A、B两种原料各多少吨?(2)由于每种运输方式的运输能力有限,都无法单独承担这批原料的运输任务.加工厂为了尽快将这批原料运往仓库,决定将A原料选一种方式运输,B原料用另一种方式运输,哪种方案运输总花费较少?请说明理由.29.在平面直角坐标系中,点,,的坐标分别为,,,且,满足方程为二元一次方程.(1)求,的坐标.(2)若点为轴正半轴上的一个动点.①如图1,当时,与的平分线交于点,求的度数;②如图2,连接,交轴于点.若成立.设动点的坐标为,求的取值范围.30.如图,已知点,,.(1)求的面积;(2)点是在坐标轴上异于点的一点,且的面积等于的面积,求满足条件的点的坐标;(3)若点的坐标为,且,连接交于点,在轴上有一点,使的面积等于的面积,请直接写出点的坐标__________(用含的式子表示).【参考答案】***试卷处理标记,请不要删除一、解答题1.(1)A(-2,0)、B(0,3);(2)∠APD=90°;(3)∠N的大小不变,∠N=45°【分析】(1)利用非负数的和为零,各项分别为零,求出a,b的值;(2)如图,作DM∥x轴,结合题意可设∠ADP=∠OAP=x,∠EAF=∠CAF=∠OAP=y,根据平角的定义可知∠OAD=90°-2y,由平行线的性质可得∠OAD+∠ADM=180°,即90-2y+2x+90°=180°,进而可得出x=y,再结合图形即可得出∠APD的度数;(3)∠N的大小不变,∠N=45°,如图,过D作DE∥BC,过N作NF∥BC,根据平行线的性质可知∠BMD+∠OAD=∠ADM=90°,然后根据角平分线的定义和平行线的性质,可得∠ANM=∠BMD+∠OAD,据此即可得到结论.【详解】(1)由,可得和,解得∴A的坐标是(-2,0)、B的坐标是(0,3);(2)如图,作DM∥x轴根据题意,设∠ADP=∠OAP=x,∠EAF=∠CAF=∠OAP=y,∵∠CAD=90°,∴∠CAE+∠OAD=90°,∴2y+∠OAD=90°,∴∠OAD=90°-2y,∵DM∥x轴,∴∠OAD+∠ADM=180°,∴90-2y+2x+90°=180°,∴x=y,∴∠APD=180°-(∠PAD+∠ADP)=180°-(y+90°-2y+x)=180°-90°=90°(3)∠N的大小不变,∠N=45°理由:如图,过D作DE∥BC,过N作NF∥BC.∵BC∥x轴,∴DE∥BC∥x轴,NF∥BC∥x轴,∴∠EDM=∠BMD,∠EDA=∠OAD,∵DM⊥AD,∴∠ADM=90°,∴∠BMD+∠OAD=∠EDM+∠EDA=∠ADM=90°,∵MN平分∠BMD,AN平分∠DAO,∴∠BMN=∠BMD,∠OAN=∠OAD,∴∠ANM=∠BMN+∠OAN=∠BMD+∠OAD=×90°=45°.【点睛】本题考查了坐标与图形性质:利用点的坐标计算出相应的线段的长和判断线段与坐标轴的位置关系.也考查了三角形内角和定理和三角形外角性质.2.(1)40°;(2)65°;(3)存在,56°或20°【分析】(1)依据平行线的性质以及角平分线的定义,即可得到∠PCG的度数;(2)依据平行线的性质以及角平分线的定义,即可得到∠ECG=∠GCF=25°,再根据PQ∥CE,即可得出∠CPQ=∠ECP=65°;(3)设∠EGC=4x,∠EFC=3x,则∠GCF=4x-3x=x,分两种情况讨论:①当点G、F在点E的右侧时,②当点G、F在点E的左侧时,依据等量关系列方程求解即可.【详解】解:(1)∵∠CEB=100°,AB∥CD,∴∠ECQ=80°,∵∠PCF=∠PCQ,CG平分∠ECF,∴∠PCG=∠PCF+∠FCG=∠QCF+∠FCE=∠ECQ=40°;(2)∵AB∥CD∴∠QCG=∠EGC,∠QCG+∠ECG=∠ECQ=80°,∴∠EGC+∠ECG=80°,又∵∠EGC-∠ECG=30°,∴∠EGC=55°,∠ECG=25°,∴∠ECG=∠GCF=25°,∠PCF=∠PCQ=(80°-50°)=15°,∵PQ∥CE,∴∠CPQ=∠ECP=65°;(3)设∠EGC=4x,∠EFC=3x,则∠GCF=∠FCD=4x-3x=x,①当点G、F在点E的右侧时,则∠ECG=x,∠PCF=∠PCD=x,∵∠ECD=80°,∴x+x+x+x=80°,解得x=16°,∴∠CPQ=∠ECP=x+x+x=56°;②当点G、F在点E的左侧时,则∠ECG=∠GCF=x,∵∠CGF=180°-4x,∠GCQ=80°+x,∴180°-4x=80°+x,解得x=20°,∴∠FCQ=∠ECF+∠ECQ=40°+80°=120°,∴∠PCQ=∠FCQ=60°,∴∠CPQ=∠ECP=80°-60°=20°.【点睛】本题主要考查了平行线的性质,解题时注意:两直线平行,同旁内角互补;两直线平行,内错角相等.3.(1)120,90;(2)①∠1=120°-n°,∠2=90°+n°;②见解析【分析】(1)根据邻补角的定义和平行线的性质解答;(2)①根据邻补角的定义求出∠ABE,再根据两直线平行,同位角相等可得∠1=∠ABE,根据两直线平行,同旁内角互补求出∠BCG,然后根据周角等于360°计算即可得到∠2;②结合图形,分AB、BC、AC三条边与直尺垂直讨论求解.【详解】解:(1)∠1=180°-60°=120°,∠2=90°;故答案为:120,90;(2)①如图2,∵∠ABC=60°,∴∠ABE=180°-60°-n°=120°-n°,∵DG∥EF,∴∠1=∠ABE=120°-n°,∠BCG=180°-∠CBF=180°-n°,∵∠ACB+∠BCG+∠2=360°,∴∠2=360°-∠ACB-∠BCG=360°-90°-(180°-n°)=90°+n°;②当n=30°时,∵∠ABC=60°,∴∠ABF=30°+60°=90°,AB⊥DG(EF);当n=90°时,∠C=∠CBF=90°,∴BC⊥DG(EF),AC⊥DE(GF);当n=120°时,∴AB⊥DE(GF).【点睛】本题考查了平行线角的计算,垂线的定义,主要利用了平行线的性质,直角三角形的性质,读懂题目信息并准确识图是解题的关键.4.(1)是;(2)∠B=∠ACB,证明见解析;(3)∠BAC=40°,AC⊥AD.【分析】(1)要使AD平分∠EAC,则要求∠EAD=∠CAD,由平行线的性质可得∠B=∠EAD,∠ACB=∠CAD,则当∠ACB=∠B时,有AD平分∠EAC;(2)根据角平分线可得∠EAD=∠CAD,由平行线的性质可得∠B=∠EAD,∠ACB=∠CAD,则有∠ACB=∠B;(3)由AC⊥BC,有∠ACB=90°,则可求∠BAC=40°,由平行线的性质可得AC⊥AD.【详解】解:(1)是,理由如下:要使AD平分∠EAC,则要求∠EAD=∠CAD,由平行线的性质可得∠B=∠EAD,∠ACB=∠CAD,则当∠ACB=∠B时,有AD平分∠EAC;故答案为:是;(2)∠B=∠ACB,理由如下:∵AD平分∠EAC,∴∠EAD=∠CAD,∵AD∥BC,∴∠B=∠EAD,∠ACB=∠CAD,∴∠B=∠ACB.(3)∵AC⊥BC,∴∠ACB=90°,∵∠EBF=50°,∴∠BAC=40°,∵AD∥BC,∴AD⊥AC.【点睛】此题考查了角平分线和平行线的性质,熟练掌握角平分线和平行线的有关性质是解题的关键.5.(1)①18°;②2∠BEG+∠HFG=90°,证明见解析;(2)2∠BEG-∠HFG=90°证明见解析部【分析】(1)①证明2∠BEG+∠HFG=90°,可得结论.②利用平行线的性质证明即可.(2)如图2中,结论:2∠BEG-∠HFG=90°.利用平行线的性质证明即可.【详解】解:(1)①∵EG平分∠BEF,∴∠BEG=∠FEG,∵FH⊥EF,∴∠EFH=90°,∵AB∥CD,∴∠BEF+∠EFG=180°,∴2∠BEG+90°+∠HFG=180°,∴2∠BEG+∠HFG=90°,∵∠BEG=36°,∴∠HFG=18°.故答案为:18°.②结论:2∠BEG+∠HFG=90°.理由:∵EG平分∠BEF,∴∠BEG=∠FEG,∵FH⊥EF,∴∠EFH=90°,∵AB∥CD,∴∠BEF+∠EFG=180°,∴2∠BEG+90°+∠HFG=180°,∴2∠BEG+∠HFG=90°.(2)如图2中,结论:2∠BEG-∠HFG=90°.理由:∵EG平分∠BEF,∴∠BEG=∠FEG,∵FH⊥EF,∴∠EFH=90°,∵AB∥CD,∴∠BEF+∠EFG=180°,∴2∠BEG+90°-∠HFG=180°,∴2∠BEG-∠HFG=90°.【点睛】本题考查平行线的性质,角平分线的定义等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.6.(1)见解析;(2)55°;(3)【分析】(1)根据平行线的判定定理与性质定理解答即可;(2)①如图2,过点作,当点在点的左侧时,根据,,根据平行线的性质及角平分线的定义即可求的度数;②如图3,过点作,当点在点的右侧时,,,根据平行线的性质及角平分线的定义即可求出的度数.【详解】解:(1)如图1,过点作,则有,,,,;(2)①如图2,过点作,有.,...即,平分,平分,,,.答:的度数为;②如图3,过点作,有.,,...即,平分,平分,,,.答:的度数为.【点睛】本题考查了平行线的判定与性质,解决本题的关键是熟练掌握平行线的判定与性质.7.(1);(2)①;②;(3).【分析】(1)根据题目中的式子可以写出第n个式子的结果;(2)①根据题目中的式子的特点和(1)中的结果,可以求得所求式子的值;②根据题目中的式子的特点和(1)中的结果,可以求得所求式子的值;(3)根据题目中式子的特点,可以求得所求式子的值.【详解】解:(1)由题目中的式子可得,,故答案为:;(2)①,故答案为:;②,故答案为:;(3).【点睛】本题考查数字的变化类、有理数的混合运算,解答本题的关键是明确题意,发现题目中式子的变化特点,求出所求式子的值.8.(1)7;-7;(2)5;(3)13-.【分析】(1)估算出的范围,即可得出答案;(2)分别确定出a、b的值,代入原式计算即可求出值;(3)根据题意确定出等式左边的整数部分得出y的值,进而求出y的值,即可求出所求.【详解】解:(1)∵7﹤﹤8,∴的整数部分是7,小数部分是-7.故答案为:7;-7.(2)∵3﹤﹤4,∴,∵2﹤﹤3,∴b=2∴|a-b|+=|-3-2|+=5-+=5(3)∵2﹤﹤3∴11<9+<12,∵9+=x+y,其中x是整数,且0﹤y<1,∴x=11,y=-11+9+=-2,∴x-y=11-(-2)=13-【点睛】本题考查的是无理数的小数部分和整数部分及其运算.估算无理数的整数部分是解题关键.9.(1)①两;②8;③5;④58;(2)①24;②56.【分析】(1)①根据例题进行推理得出答案;②根据例题进行推理得出答案;③根据例题进行推理得出答案;④根据②③得出答案;(2)①先判断它的立方根是几位数,再判断个位、十位上的数字,即可得到结论;②先判断它的立方根是几位数,再判断个位、十位上的数字,即可得到结论.【详解】(1)①,,∴,∴能确定195112的立方根是一个两位数,故答案为:两;②∵195112的个位数字是2,又∵,∴能确定195112的个位数字是8,故答案为:8;③如果划去195112后面三位112得到数195,而,∴,可得,由此能确定195112的立方根的十位数是5,故答案为:5;④根据②③可得:195112的立方根是58,故答案为:58;(2)①13824的立方根是两位数,立方根的个位数是4,十位数是2,∴13824的立方根是24,故答案为:24;②175616的立方根是两位数,立方根的个位数是6,十位数是5,∴175616的立方根是56,故答案为:56.【点睛】此题考查立方根的性质,一个数的立方数的特点,正确理解题意仿照例题解题的能力,掌握一个数的立方数的特点是解题的关键.10.(1);;(2)①;②;(3).【分析】(1)利用材料中的“拆项法”解答即可;(2)①先变形为,再利用(1)中的规律解题;②先变形为,再逆用分数的加法法则即可分解;(3)按照定义“”法则表示出,再利用(1)中的规律解题即可.【详解】解:(1)观察发现:,===;故答案是:;.(2)初步应用:①=;②;故答案是:;.(3)由定义可知:====.故的值为.【点睛】考查了有理数运算中的规律型问题:数字的变化规律,有理数的混合运算.本题是一道找规律的题目,要求学生通过观察,分析、归纳发现其中的规律,并应用发现的规律解决问题.11.(1)1022;(2)3066,2226;(3)【分析】(1)由于千位不能为0,最小只能取1;根据题目得出相应的公式:十位=2×千位﹣百位,个位=2×千位+百位,分别求出十位和个位,即可求出最小的四位依赖数;(2)设千位数字是x,百位数字是y,根据“依赖数”定义,则有:十位数字是(2x﹣y),个位数字是(2x+y),依据题意列出代数式然后表示为7的倍数加余数形式,然后求出x、y即可,从而求出所有特色数;(3)根据最小分解的定义可知:n越小,p、q越接近,nq﹣np才越小,才是最小分解,此时F(m)=,故将(2)中特色数分解,找到最小分解,然后将n、p、q的值代入F(m)=,再比较大小即可.【详解】解:(1)由题意可知:千位一定是1,百位取0,十位上的数字为:2×1-0=2,个位上的数字为:2×1+0=2则最小的四位依赖数是1022;(2)设千位数字是x,百位数字是y,根据“依赖数”定义,则有:十位数字是(2x﹣y),个位数字是(2x+y),根据题意得:100y+10(2x﹣y)+2x+y﹣3y=88y+22x=21(4y+x)+(4y+x),∵21(4y+x)+(4y+x)被7除余3,∴4y+x=3+7k,(k是非负整数)∴此方程的一位整数解为:x=4,y=5(此时2x+y>10,故舍去);x=3,y=7(此时2x﹣y<0,故舍去);x=3,y=0;x=2,y=2;x=1,y=4(此时2x﹣y<0,故舍去);∴特色数是3066,2226.(3)根据最小分解的定义可知:n越小,p、q越接近,nq﹣np才越小,才是最小分解,此时F(m)=,由(2)可知:特色数有3066和2226两个,对于3066=613×5+14=61×50+24∵1×613-1×5>2×61-2×50,∴3066取最小分解时:n=2,p=50,q=61∴F(3066)=对于2226=89×25+14=65×34+24,∵1×89-1×25>2×65-2×34,∴2226取最小分解时:n=2,p=34,q=65∴F(2226)=∵故所有“特色数”的F(m)的最大值为:.【点睛】此题考查的是新定义类问题,理解题意,并根据新定义解决问题是解决此题的关键.12.(1)-3006,990;(2)见解析;(3)P(t)的最大值是P(2262)=36.【分析】(1)根据“前介数”t与它的“中介数”的差为P(t)的定义求解即可;(2)设“前介数”为且a、b、c均不为0的整数,即1a、b、c,根据定义得到P(t)=,则P(t)一定能被9整除;(3)设“前介数”为,根据题意得到能被3整除,且b只能取2,4,6,8中的其中一个数;对应的“中介数”是,得到a只能取2,4,6,8中的其中一个数,计算P(t),推出要求P(t)的最大值,即要尽量的大,要尽量的小,再分类讨论即可求解.【详解】(1)解:2215是“前介数”,其对应的“中介数”是5221,∴P(2215)=2215-5221=-3006;6655是“前介数”,其对应的“中介数”是5665,∴P(6655)=6655-5665=990;故答案为:-3006,990;(2)证明:设“前介数”为且a、b、c均为不为0的整数,即1a、b、c,∴,又对应的“中介数”是,∴P(t)=,∵a、b、c均不为0的整数,∴为整数,∴P(t)一定能被9整除;(3)证明:设“前介数”为且即1a、b,a、b均为不为0的整数,∴,∵能被6整除,∴能被2整除,也能被3整除,∴为偶数,且能被3整除,又1,∴b只能取2,4,6,8中的其中一个数,又对应的“中介数”是,且该“中介数”能被2整除,∴为偶数,又1,∴a只能取2,4,6,8中的其中一个数,∴P(t)=,要求P(t)的最大值,即要尽量的大,要尽量的小,①的最大值为8,的最小值为2,但此时,且14不能被3整除,不符合题意,舍去;②的最大值为6,的最小值仍为2,但此时,能被3整除,且P(t)=2262-2226=36;③的最大值仍为8,的最小值为4,但此时,且16不能被3整除,不符合题意,舍去;其他情况,减少,增大,则P(t)减少,∴满足条件的P(t)的最大值是P(2262)=36.【点睛】本题考查用新定义解题,根据新定义,表示出“前介数”,与其对应的“中介数”是求解本题的关键.本题中运用到的分类讨论思想是重要一种数学解题思想方法.13.(1)(8,12),(0,10);(2)2秒或14秒;(3)存在,t=2.5s或【分析】(1)由非负数的性质可得a、b的值,据此可得点B的坐标;由点P运动速度和时间可得其运动5秒的路程,得到OP=10,从而得出其坐标;(2)先根据点P运动11秒判断出点P的位置,再根据三角形的面积公式求解可得;(3)分为点P在OC、BC上分类计算即可.【详解】解:(1)∵a,b满足,∴a=8,b=12,∴点B(8,12);当点P移动5秒时,其运动路程为5×2=10,∴OP=10,则点P坐标为(0,10),故答案为:(8,12)、(0,10);(2)由题意可得,第一种情况,当点P在OC上时,点P移动的时间是:4÷2=2秒,第二种情况,当点P在BA上时.点P移动的时间是:(12+8+8)÷2=14秒,所以在移动过程中,当点P到x轴的距离为4个单位长度时,点P移动的时间是2秒或14秒.(3)如图1所示:∵△OBP的面积=20,∴OP•BC=20,即×8×OP=20.解得:OP=5.∴此时t=2.5s如图2所示;∵△OBP的面积=20,∴PB•OC=20,即×12×PB=20.解得:BP=.∴CP=.∴此时t=,综上所述,满足条件的时间t=2.5s或【点睛】本题考查矩形的性质,三角形的面积,坐标与图形的性质,解题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答问题.14.(1)见解析;(2)见解析;(3)40°【分析】(1)根据平行线的性质和判定解答即可;(2)过点H作HP∥AB,根据平行线的性质解答即可;(3)过点H作HP∥AB,根据平行线的性质解答即可.【详解】证明:(1)∵AB∥CD,∴∠AFE=∠FED,∵∠AGH=∠FED,∴∠AFE=∠AGH,∴EF∥GH,∴∠FEH+∠H=180°,∵FE⊥HE,∴∠FEH=90°,∴∠H=180°﹣∠FEH=90°,∴HG⊥HE;(2)过点M作MQ∥AB,∵AB∥CD,∴MQ∥CD,过点H作HP∥AB,∵AB∥CD,∴HP∥CD,∵GM平分∠HGB,∴∠BGM=∠HGM=∠BGH,∵EM平分∠HED,∴∠HEM=∠DEM=∠HED,∵MQ∥AB,∴∠BGM=∠GMQ,∵MQ∥CD,∴∠QME=∠MED,∴∠GME=∠GMQ+∠QME=∠BGM+∠MED,∵HP∥AB,∴∠BGH=∠GHP=2∠BGM,∵HP∥CD,∴∠PHE=∠HED=2∠MED,∴∠GHE=∠GHP+∠PHE=2∠BGM+2∠MED=2(∠BGM+∠MED),∴∠GHE=∠2GME;(3)过点M作MQ∥AB,过点H作HP∥AB,由∠KFE:∠MGH=13:5,设∠KFE=13x,∠MGH=5x,由(2)可知:∠BGH=2∠MGH=10x,∵∠AFE+∠BFE=180°,∴∠AFE=180°﹣10x,∵FK平分∠AFE,∴∠AFK=∠KFE=∠AFE,即,解得:x=5°,∴∠BGH=10x=50°,∵HP∥AB,HP∥CD,∴∠BGH=∠GHP=50°,∠PHE=∠HED,∵∠GHE=90°,∴∠PHE=∠GHE﹣∠GHP=90°﹣50°=40°,∴∠HED=40°.【点睛】本题考查了平行线的判定与性质,熟练掌握平行线的判定与性质定理以及灵活构造平行线是解题的关键.15.(1);(2);(3)存在点,其坐标为或.【分析】(1)利用平移得性质确定出平移得单位和方向;(2)根据平移得性质,设出平移单位,根据S△BCD=7(S△BCD建立方程求解,即可);(3)设出点P的坐标,表示出PC用,建立方程求解即可.【详解】(1)∵B(3,0)平移后的对应点,∴设,∴即线段向左平移5个单位,再向上平移4个单位得到线段∴点平移后的对应点;(2)∵点C在轴上,点D在第二象限,∴线段向左平移3个单位,再向上平移个单位,∴连接,,∴∴;(3)存在设点,∴∵,∴∴,∴∴存在点,其坐标为或.【点睛】本题考查了线段平移的性质,解题的关键在利用平移的性质,得到点坐标的关系、图形面积的关系,根据面积的关系,从而求出点的坐标.16.(1)a=﹣2或a=8;(2)1<b<4;(3)t或0<t.【分析】(1)将点P与点A代入d(M,N)=|x1−x2|+|y1−y2|即可求解;(2)将点B与点P代入d(M,N)=|x1−x2|+|y1−y2|,得到d(P,B)=|3−b|+|2−b|,分三种情况去掉绝对值符号进行化简,有当b<2时,d(P,B)=3−b+2−b=5−2b<3;当2≤b≤3时,d(P,B)=3−b+b−2=1<3;当b>3时,d(P,B)=b−3+b−2=2b−5<3;(3)设T点的坐标为(t,m),由点T与点P的“横长”与“纵长”相等,得到|t−3|=|m−2|,得到t与m的关系式,再由T在第一象限,d(P,T)>5,结合求解即可.【详解】(1)∵点P(3,2),点A(a,2),∴d(P,A)=|3﹣a|+|2﹣2|=5,∴a=﹣2或a=8;(2)∵点P(3,2),点B(b,b),∴d(P,B)=|3﹣b|+|2﹣b|,当b<2时,d(P,B)=3﹣b+2﹣b=5﹣2b<3,∴b>1,∴1<b<2;当2≤b≤3时,d(P,B)=3﹣b+b﹣2=1<3成立,∴2≤b≤3;当b>3时,d(P,B)=b﹣3+b﹣2=2b﹣5<3,∴b<4,∴3<b<4;综上所述:1<b<4;(3)设T点的坐标为(t,m),点T与点P的“横长”=|t﹣3|,点T与点P的“纵长”=|m﹣2|.∵点T与点P的“横长”与“纵长”相等,∴|t﹣3|=|m﹣2|,∴t﹣3=m﹣2或t﹣3=2﹣m,∴m=t﹣1或m=5﹣t.∵点T是第一象限内的点,∴m>0,∴t>1或t<5,又∵d(P,T)>5,∴2|t﹣3|>5,∴t或t,∴t或0<t.【点睛】本题考查平面内点的坐标,新定义;能够将定义内容转化为绝对值不等式,再将绝对值不等式根据绝对值的意义转化为一元一次不等式的求解是解题的关键.17.(1)(0,6),(8,0);(2)存在t=2.4时,使得△ODP与△ODQ的面积相等;(3)∠DOG+∠ACE=∠OHC【分析】(1)利用非负性即可求出a,b即可得出结论;(2)先表示出OQ,OP,利用面积相等,建立方程求解即可得出结论;(3)先判断出∠OAC=∠AOD,进而判断出OG∥AC,即可判断出∠FHC=∠ACE,同理∠FHO=∠DOG,即可得出结论.【详解】解:(1)∵,∴a-b+2=0,b-8=0,∴a=6,b=8,∴A(0,6),C(8,0),故答案为(0,6),(8,0);(2)由(1)知,A(0,6),C(8,0),∴OA=6,OB=8,由运动知,OQ=t,PC=2t,∴OP=8-2t,∵D(4,3),∴S△ODQ=OQ×|xD|=t×4=2t,S△ODP=OP×|yD|=(8-2t)×3=12-3t,∵△ODP与△ODQ的面积相等,∴2t=12-3t,∴t=2.4,∴存在t=2.4时,使得△ODP与△ODQ的面积相等;(3)∴∠GOD+∠ACE=∠OHC,理由如下:∵x轴⊥y轴,∴∠AOC=∠DOC+∠AOD=90°,∴∠OAC+∠ACO=90°,又∵∠DOC=∠DCO,∴∠OAC=∠AOD,∵y轴平分∠GOD,∴∠GOA=∠AOD,∴∠GOA=∠OAC,∴OG∥AC,如图,过点H作HF∥OG交x轴于F,∴HF∥AC,∴∠FHC=∠ACE,同理∠FHO=∠GOD,∵OG∥FH,∴∠DOG=∠FHO,∴∠DOG+∠ACE=∠FHO+∠FHC,即∠DOG+∠ACE=∠OHC.【点睛】此题是三角形综合题,主要考查了非负性的性质,三角形的面积公式,角平分线的定义,平行线的性质,正确作出辅助线是解本题的关键.18.(1)(2,6);(2)(,0)或(9,0);(3)∠OCD+∠DBA=∠BDC或∠OCD-∠DBA=∠BDC【分析】(1)由点的坐标的特点,确定出FC=2,OF=6,得出C(2,6);(2)分点D在线段OA和在OA延长线两种情况进行计算;(3)分点D在线段OA上时,∠OCD+∠DBA=∠BDC和在OA延长线∠OCD-∠DBA=∠BDC两种情况进行计算.【详解】解:(1)如图,过点C作CF⊥y轴,垂足为F,过B作BE⊥x轴,垂足为E,∵A(6,0),B(8,6),∴FC=AE=8-6=2,OF=BE=6,∴C(2,6);(2)设D(x,0),当△ODC的面积是△ABD的面积的3倍时,若点D在线段OA上,∵OD=3AD,∴×6x=3××6(6-x),∴x=,∴D(,0);若点D在线段OA延长线上,∵OD=3AD,∴×6x=3××6(x-6),∴x=9,∴D(9,0);(3)如图,过点D作DE∥OC,由平移的性质知OC∥AB.∴OC∥AB∥DE.∴∠OCD=∠CDE,∠EDB=∠DBA.若点D在线段OA上,∠BDC=∠CDE+∠EDB=∠OCD+∠DBA,即∠OCD+∠DBA=∠BDC;若点D在线段OA延长线上,∠BDC=∠CDE-∠EDB=∠OCD-∠DBA,即∠OCD-∠DBA=∠BDC.【点睛】此题是几何变换综合题,主要考查了点三角形面积的计算方法,平移的性质,平行线的性质和判定,解本题的关键是分点D在线段OA上,和OA延长线上两种情况.19.(1)C;(2)39和29【分析】(1)首先设较大的两位数为,较小的两位数为,根据题意可得等量关系:①两个两位数的和为68,②比大990,根据等量关系列出方程组;(2)利用加减消元法解方程组即可.【详解】解:(1)解:设较大的两位数为,较小的两位数为,根据题意,得故选:C;(2)化简得,①+②,得,即.①-②,得,即.所以这两个数分别是39和29.【点睛】此题主要考查了由实际问题抽象出二元一次方程组和解二元一次方程组,关键是弄清题目意思,表示出“较小的两位数写在较大的两位数的右边,得到一个四位数为”,把较小的两位数写在较大的两位数的左边,得到另一个四位数为.20.(1)6,10;(2)。【解析】【分析】(1)下行-上行后将下行除以3将的系数化为1即可得方程组的解;(2)类比(1)中方法通过加减法将、的系数化为1可得.【详解】解:(1)下行﹣上行,,故答案为:6,10;(2)所以方程组的解为.【点睛】本题主要考查矩阵法解二元一次方程组,熟练掌握加减消元法解二元一次方程组是解题的关键.21.(1)A型车、B型车都装满货物一次可以分别运货3吨、4吨;(2)最省钱的租车方案是方案一:A型车8辆,B型车2辆,最少租车费为2080元.【分析】(1)设每辆A型车、B型车都装满货物一次可以分别运货x吨、y吨,根据题目中的等量关系:用3辆A型车和2辆B型车载满货物一次可运货17吨;用2辆A型车和3辆B型车载满货物一次可运货l8吨,列方程组求解即可;(2)由题意得出3a+4b=35,然后由a、b为整数解,得到三中租车方案;(3)根据(2)中的所求方案,利用A型车每辆需租金200元/次,B型车每辆需租金240元/次,分别求出租车费用即可.【详解】解:(1)设每辆A型车、B型车都装满货物一次可以分别运货x吨、y吨,依题意列方程组为:解得答:1辆A型车辆装满货物一次可运3吨,1辆B型车装满货物一次可运4吨.(2)结合题意,和(1)可得3a+4b=35∴a=∵a、b都是整数∴或或答:有3种租车方案:方案一:A型车9辆,B型车2辆;方案二:A型车5辆,B型车5辆;方案三:A型车1辆,B型车8辆.(3)∵A型车每辆需租金200元/次,B型车每辆需租金240元/次,∴方案一需租金:9×200+2×240=2280(元)方案二需租金:5×200+5×240=2200(元)方案三需租金:1×200+8×240=2120(元)∵2280>2200>2120∴最省钱的租车方案是方案一:A型车1辆,B型车8辆,最少租车费为2120元.【点睛】此题主要考查了二元一次方程组以及二元一次方程的解法,关键是明确二元一次方程有无数解,但在解与实际问题有关的二元一次方程组时,要结合未知数的实际意义求解.22.(1)A的单价30元,B的单价15元(2)购买A奖品8个,购买B奖品22个,花费最少【分析】(1)设A的单价为x元,B的单价为y元,根据题意列出方程组,即可求解;(2)设购买A奖品z个,则购买B奖品为个,购买奖品的花费为W元,根据题意得到由题意可知,,,根据一次函数的性质,即可求解;【详解】解:(1)设A的单价为x元,B的单价为y元,根据题意,得,,A的单价30元,B的单价15元;(2)设购买A奖品z个,则购买B奖品为个,购买奖品的花费为W元,由题意可知,,,,当时,W有最小值为570元,即购买A奖品8个,购买B奖品22个,花费最少;【点睛】本题考查二元一次方程组的应用,一次函数的应用;能够根据条件列出方程组,将最优方案转化为一次函数性质解题是关键.23.(1)a=60,b=40;(2)①64,38;②x=7,y=12【分析】(1)由图示利用板材的长列出关于a、b的二元一次方程组求解;(2)①根据已知和图示计算出两种裁法共产生A型板材和B型板材的张数;②根据竖式与横式礼品盒所需要的A、B两种型号板材的张数列出关于x、y的二元一次方程组,然后求解即可.【详解】解:(1)由题意得:,解得:,答:图甲中与的值分别为:60、40;(2)①由图示裁法一产生型板材为:,裁法二产生型板材为:,所以两种裁法共产生型板材为(张,由图示裁法一产生型板材为:,裁法二产生型板材为,,所以两种裁法共产生型板材为(张,故答案为:64,38;②根据题意竖式有盖礼品盒的个,横式无盖礼品盒的个,则型板材需要个,型板材需要个,所以,解得.【点睛】本题考查的知识点是二元一次方程组的应用,关键是根据已知先列出二元一次方程组求出a、b的值,根据图示列出算式以及关于x、y的二元一次方程组.24.(1)87和12是“黄金搭档数”,62和49不是“黄金搭档数”,理由见解析;(2)39或38【分析】(1)根据“黄金搭档数”的定义分别判断即可;(2)由已知设x,y为整数,x,z为整数,表示出,由s和t是一对“黄金搭档数”,并且s与t的和能被7整除,综合分析,列出方程组求解即可.【详解】(1)解:∵∴87和12是一对“黄金搭档数”;∵∴111与62,49数位不相同,∴62和49不是一对“黄金搭档数”;故87和12是一对“黄金搭档数”,62和49不是一对“黄金搭档数”;(2)∵两位数s和两位数t的十位数字相同,∴设x,y为整数,x,z为整数,∴∵s和t是一对“黄金搭档数”,∴是一个两位数,且各个数位上的数相同,又∵s与t的和能被7整除,∴,共有两种情况:①,解得,∵x为整数,∴不合题意,舍去;②,∵都是整数,且∴解得或,故s为39或38.【点睛】本题考查三元一次方程组的整数解,解题关键是理解题目中的定义,根据已知条件列出方程组.25.(1)①a=1,b=3;②-2≤p<-;(2)a=2b.【分析】(1)①按题意的运算可得方程组,即可求得a、b的值;②按题意的运算可得不等式组,即可求得p的取值范围;(2)由题意可得ax+2by-1=ay+2bx-1,从而可得a="2b";【详解】(1)①由题意可得,解得;②由题意得,解得,因为原不等式组有2个整数解,所以,所以;(2)T(x,y)="ax+2by-1,"T(y,x)="ay+2bx-1",所以ax+2by-1=ay+2bx-1,所以(a-2ba)x-(a-2b)y=0,(a-2b)(x-y)=0,所以a=2b26.(1)4,﹣7;(2)3≤x<4;(3);(4)或或或【分析】(1)根据题目中的定义,[x]表示不超过x的最大整数,求出结果即可;(2)根据定义,是大于等于3小于4的数;(3)由得到,求出的取值范围,再由是整数即可得到的值;(4)由和得,设是整数,即可求出的取值范围,然后分类讨论求出的值即可.【详解】解:(1)∵不超过4.8的最大整数是4,∴,∵不超过的最大整数是,∴故答案是:4,;(2)∵,∴是大于等于3小于4的数,即;(3)∵,∴,解得,∵是整数,∴;(4)∵,∴,∵,∴,即,∵(是整数),∴,∵,∴,解得,当时,,,当时,,,当时,,,当时,,,综上:的值为或或或.【点睛】本题考查新定义问题,不等式组的运用,解题的关键是理解题目中的意义,列出不等式组进行求解.27.(1)①⑥;(2),,;(3)有四种不同的截法不浪费材料,分别为2长的钢丝12根,3长的钢丝2根;或2长的钢丝9根,3长的钢丝4根;或2长的钢丝6根,3长的钢丝6根;或2长的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2020-2021九年级化学-化学推断题的专项-培优练习题及详细答案
- 建筑基建业务合同
- 医院信息科员工合同
- 人教版二年级数学下册除法的意义(平均分)巩固
- 苏教版小学语文三年级上册期末模拟考试卷(三)
- 浙江省下学期小学四年级数学素养导向测试试卷
- 2025年湖北省鄂州市华容区保安员招聘考试题库附答案解析
- 小区充电桩定制合同
- 2025年施工员(设备安装)专业技能题库剖析及答案
- 建设单位私人合同
- 寺庙修缮工程协议书
- YY/T 1994-2025采用机器人技术的血管介入手术控制系统
- 2025年第十一届《中金所杯全国大学生金融知识大赛》复赛题库附答案
- 酿造酒工艺与品鉴培训
- 2025年及未来5年中国卫生杀虫剂行业市场供需格局及行业前景展望报告
- 2025江西宜春市丰城高级技工学校招聘30人考试笔试备考试题及答案解析
- 2026-2031年中国山慈菇行业市场发展现状及投资前景预测报告
- 2025年国学经典知识竞赛题库及答案
- 原发性肝癌的课件
- 培训机构合作方案
- 2026 年国家公务员考试申论 20 大热点押题及解答
评论
0/150
提交评论