2026届江苏省海安市南莫中学高二上数学期末检测试题含解析_第1页
2026届江苏省海安市南莫中学高二上数学期末检测试题含解析_第2页
2026届江苏省海安市南莫中学高二上数学期末检测试题含解析_第3页
2026届江苏省海安市南莫中学高二上数学期末检测试题含解析_第4页
2026届江苏省海安市南莫中学高二上数学期末检测试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2026届江苏省海安市南莫中学高二上数学期末检测试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知,,若,则实数的值为()A. B.C. D.2.在中,,,,若该三角形有两个解,则范围是()A. B.C. D.3.若,都是实数,则“”是“”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分又不必要条件4.从装有2个红球和2个白球的袋内任取2个球,那么互斥而不对立的两个事件是()A.取出的球至少有1个红球;取出的球都是红球B.取出的球恰有1个红球;取出的球恰有1个白球C.取出的球至少有1个红球;取出的球都是白球D.取出的球恰有1个白球;取出的球恰有2个白球5.已知A,B,C,D是同一球面上的四个点,其中是正三角形,平面,,则该球的表面积为()A. B.C. D.6.设是双曲线与圆在第一象限的交点,,分别是双曲线的左,右焦点,若,则双曲线的离心率为()A. B.C. D.7.一个盒子里有3个分别标有号码为1,2,3小球,每次取出一个,记下它的标号后再放回盒子中,共取2次,则在两次取得小球中,标号最大值是3的概率为()A. B.C. D.8.设是椭圆的上顶点,若上的任意一点都满足,则的离心率的取值范围是()A. B.C. D.9.已知动点的坐标满足方程,则的轨迹方程是()A. B.C. D.10.下列函数中,以为最小正周期,且在上单调递减的为()A. B.C. D.11.在四面体中,点G是的重心,设,,,则()A. B.C. D.12.美学四大构件是:史诗、音乐、造型(绘画、建筑等)和数学.素描是学习绘画的必要一步,它包括明暗素描和结构素描,而学习几何体结构素描是学习素描最重要的一步.某同学在画切面圆柱体(用与圆柱底面不平行的平面去截圆柱,底面与截面之间的部分叫做切面圆柱体,原圆柱的母线被截面所截剩余的部分称为切面圆柱体的母线)的过程中,发现“切面”是一个椭圆,若切面圆柱体的最长母线与最短母线所确定的平面截切面圆柱体得到的截面图形是有一个底角为60度的直角梯形,则该椭圆的离心率为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知函数,则的值是______.14.若,则___________15.若“”是“”必要不充分条件,则实数的最大值为_______16.直线与直线平行,则m的值是__________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)公差不为零的等差数列中,已知其前n项和为,若,且成等比数列(1)求数列的通项;(2)当时,求数列的前n和18.(12分)已知函数在处取得极值7(1)求的值;(2)求函数在区间上的最大值19.(12分)数列中,,且.(1)证明;数列是等比数列.(2)若,求数列的前n项和.20.(12分)如图所示,圆锥的高,底面圆的半径为,延长直径到点,使得,分别过点、作底面圆的切线,两切线相交于点,点是切线与圆的切点(1)证明:平面;(2)若平面与平面所成锐二面角的余弦值为,求该圆锥的体积21.(12分)如图,在四棱锥中,底面为矩形,平面平面,.(1)证明:平面平面;(2)若,为棱的中点,,,求二面角的余弦值22.(10分)已知抛物线的焦点为F,为抛物线C上的点,且.(1)求抛物线C的方程;(2)若直线与抛物线C相交于A,B两点,求弦长.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】由,得,从而可得答案.【详解】解:因为,所以,即,解得.故选:A.2、D【解析】根据三角形解得个数可直接构造不等式求得结果.【详解】三角形有两个解,,即.故选:D.3、A【解析】根据充分条件和必要条件的定义判断即可得正确选项.【详解】若,则,可得,所以,可得,故充分性成立,取,,满足,但,无意义得不出,故必要性不成立,所以是的充分不必要条件,故选:A.4、D【解析】利用互斥事件、对立事件的定义逐一判断即可.【详解】A答案中的两个事件可以同时发生,不是互斥事件B答案中的两个事件可以同时发生,不是互斥事件C答案中的两个事件不能同时发生,但必有一个发生,既是互斥事件又是对立事件D答案中的两个事件不能同时发生,也可以都不发生,故是互斥而不对立事件故选:D【点睛】本题考查的是互斥事件和对立事件的概念,较简单.5、C【解析】由题意画出几何体的图形,把、、、扩展为三棱柱,上下底面中心连线的中点与的距离为球的半径,由此能求出球的表面积【详解】把、、、扩展为三棱柱,上下底面中心连线的中点与的距离为球的半径,,,是正三角形,,,球的表面积为故选:C6、B【解析】先由双曲线定义与题中条件得到,,求出,,再由题意得到,即可根据勾股定理求出结果.【详解】解:根据双曲线定义:,,∴,∴,,,∴是圆的直径,∴,中,,得故选【点睛】本题主要考查求双曲线的离心率,熟记双曲线的简单性质即可,属于常考题型.7、C【解析】求出两次取球都没有取到3的概率,再利用对立事件的概率公式计算作答.【详解】依题意,每次取到标号为3的球的事件为A,则,且每次取球是相互独立的,在两次取得小球中,标号最大值是3的事件M,其对立事件是两次都没有取到标号为3的球的事件,,则有,所以在两次取得小球中,标号最大值是3的概率为.故选:C8、C【解析】设,由,根据两点间的距离公式表示出,分类讨论求出的最大值,再构建齐次不等式,解出即可【详解】设,由,因为,,所以,因为,当,即时,,即,符合题意,由可得,即;当,即时,,即,化简得,,显然该不等式不成立故选:C【点睛】本题解题关键是如何求出的最大值,利用二次函数求指定区间上的最值,要根据定义域讨论函数的单调性从而确定最值9、C【解析】此方程表示点到点的距离与到点的距离之差为8,而这正好符合双曲线的定义,点的轨迹是双曲线的右支,,的轨迹方程是,故选C.10、B【解析】A.利用正切函数的性质判断;B.作出的图象判断;C.作出的图象判断;D.作出的图象判断.【详解】A.是以为最小正周期,在上单调递增,故错误;B.如图所示:,由图象知:函数是以为最小正周期,在上单调递减,故正确;C.如图所示:,由图象知:是以为最小正周期,在上单调递增,故错误;D.如图所示:,由图象知:是以为最小正周期,在上单调递增,故错误;故选:B11、B【解析】结合重心的知识以及空间向量运算求得正确答案.【详解】设是中点,.故选:B12、A【解析】设圆柱的底面半径为,由题意知,,椭圆的长轴长,短轴长为,可以求出的值,即可得离心率.【详解】设圆柱的底面半径为,依题意知,最长母线与最短母线所在截面如图所示从而因此在椭圆中长轴长,短轴长,,故选:A【点睛】本题主要考查了椭圆的定义和椭圆离心力的求解,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】求出,代值计算可得的值.【详解】因为,则,因此,.故答案为:.14、【解析】先求出函数的导函数,再求出,即可得出答案.【详解】解:由,得,则,所以,所以,所以.故答案为:.15、【解析】设的解集为集合,由题意可得是的真子集,即可求解.【详解】由得或,因为“”是“”的必要不充分条件,设或,,因为“”是“”的必要不充分条件,所以是的真子集,所以故答案为:【点睛】结论点睛:本题考查充分不必要条件的判断,一般可根据如下规则判断:(1)若是的必要不充分条件,则对应集合是对应集合的真子集;(2)是的充分不必要条件,则对应集合是对应集合的真子集;(3)是的充分必要条件,则对应集合与对应集合相等;(4)是的既不充分又不必要条件,对的集合与对应集合互不包含16、【解析】利用直线的平行条件即得.详解】∵直线与直线平行,∴,∴.故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)根据等差数列的性质,结合题意,可求得值,根据成等比数列,即可求得d值,代入等差数列通项公式,即可得答案;(2)由(1)可求得,即可得表达式,根据裂项相消求和法,即可得答案.【小问1详解】设等差数列的公差为,由等差数列性质可得,解得,又成等比数列,所以,整理得,因为,所以,所以【小问2详解】由(1)可得,则,所以,所以18、(1);(2).【解析】(1)先对函数求导,根据题中条件,列出方程组求解,即可得出结果;(2)先由(1)得到,导数的方法研究其单调性,进而可求出最值.【详解】(1)因为,所以,又函数在处取得极值7,,解得;,所以,由得或;由得;满足题意;(2)又,由(1)得在上单调递增,在上单调递减,因此【点睛】方法点睛:该题考查的是有关利用导数研究函数的问题,解题方法如下:(1)先对函数求导,根据题意,结合函数在某个点处取得极值,导数为0,函数值为极值,列出方程组,求得结果;(2)将所求参数代入,得到解析式,利用导数研究其单调性,得到其最大值.19、(1)证明见解析;(2).【解析】(1)根据递推公式,结合等差数列的定义、等比数列的定义进行证明即可;(2)运用裂项相消法进行求解即可.【小问1详解】∵,∴,又∵,∴,∴数列是首项为0,公差为1的等差数列,∴,∴,从而,∴数列是首项为2,公比为2的等比数列;【小问2详解】由(1)知,则,∴,∴.20、(1)证明见解析;(2).【解析】(1)由线面垂直、切线的性质可得、,再根据线面垂直的判定即可证结论.(2)若,构建为原点,、、为x、y、z轴的空间直角坐标系,求面、面的法向量,利用空间向量夹角的坐标表示及其对应的余弦值求R,最后由圆锥的体积公式求体积.【小问1详解】由题设,底面圆,又是切线与圆的切点,∴底面圆,则,且,而,∴平面.【小问2详解】由题设,若,可构建为原点,、、为x、y、z轴的空间直角坐标系,又,可得,∴,,,有,,若是面的一个法向量,则,令,则,又面的一个法向量为,∴,可得,∴该圆锥的体积21、(1)见解析;(2)【解析】分析:(1)由四边形为矩形,可得,再由已知结合面面垂直的性质可得平面,进一步得到,再由,利用线面垂直的判定定理可得面,即可证得平面;(2)取的中点,连接,以为坐标原点,建立如图所示的空间直角坐标系,由题得,解得.进而求得平面和平面的法向量,利用向量的夹角公式,即可求解二面角的余弦值.详解:(1)证明:∵四边形ABCD是矩形,∴CD⊥BC.∵平面PBC⊥平面ABCD,平面PBC∩平面ABCD=BC,CD平面ABCD,∴CD⊥平面PBC,∴CD⊥PB.∵PB⊥PD,CD∩PD=D,CD、PD平面PCD,∴PB⊥平面PCD.∵PB平面PAB,∴平面PAB⊥平面PCD.(2)设BC中点为,连接,,又面面,且面面,所以面.以为坐标原点,的方向为轴正方向,为单位长,建立如图所示的空间直角坐标系.由(1)知PB⊥平面PCD,故PB⊥,设,可得所以由题得,解得.所以设是平面的法向量,则,即,可取.设是平面的法向量,则,即,可取.则,所以二面角的余弦值为.点睛:本题考查了立体几何中的面面垂直的判定和二面角的求解问题,意在考查学生的空间想象能力和逻辑推理能力;解答本题关键在于能利用直线与直线、直线与平面、平面与平面关系的相互转化,通过严密推理,明确角的构成.同时

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论