版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山东省青岛市第二中学2025年数学高二第一学期期末学业质量监测模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.如图所示,为了测量A,B处岛屿的距离,小张在D处观测,测得A,B分别在D处的北偏西、北偏东方向,再往正东方向行驶10海里至C处,观测B在C处的正北方向,A在C处的北偏西方向,则A,B两处岛屿间的距离为()海里.A. B.C. D.102.焦点在轴的正半轴上,且焦点到准线的距离为的抛物线的标准方程是()A. B.C. D.3.已知函数,则曲线在点处的切线方程为()A. B.C. D.4.函数的图像大致是()A B.C. D.5.在空间直角坐标系中,已知点,,则线段的中点坐标与向量的模长分别是()A.;5 B.;C.; D.;6.在直三棱柱中,侧面是边长为的正方形,,,且,则异面直线与所成的角为()A. B.C. D.7.在四面体OABC中,,,,则与AC所成角的大小为()A.30° B.60°C.120° D.150°8.已知平面直角坐标系内一动点P,满足圆上存在一点Q使得,则所有满足条件的点P构成图形的面积为()A. B.C. D.9.已知A,B,C,D是同一球面上的四个点,其中是正三角形,平面,,则该球的表面积为()A. B.C. D.10.下列数列是递增数列的是()A. B.C. D.11.等差数列的公差,且,,则的通项公式是()A. B.C. D.12.直线在轴上的截距为()A.3 B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.若圆和圆的公共弦所在的直线方程为,则______14.过点作斜率为的直线与椭圆相交于、两个不同点,若是的中点,则该椭圆的离心率___________.15.若,满足约束条件,则的最小值为______.16.已知一组数据的平均数为4,方差为3,若另一组数据的平均数为10,则该组数据的方差为_______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,在三棱锥中,平面平面,,都是等腰直角三角形,,,,分别为,的中点.(1)求证:平面;(2)求证:平面.18.(12分)如图,在三棱锥中,,,为的中点(1)证明:平面;(2)若点在棱上,且二面角为,求与平面所成角正弦值.19.(12分)已知数列是公比为2的等比数列,是与的等差中项(1)求数列的通项公式;(2)若,求数列的前n项和20.(12分)某种机械设备随着使用年限的增加,它的使用功能逐渐减退,使用价值逐年减少,通常把它使用价值逐年减少的“量”换算成费用,称之为“失效费”.某种机械设备的使用年限(单位:年)与失效费(单位:万元)的统计数据如下表所示:使用年限(单位:年)1234567失效费(单位:万元)2.903.303.604.404.805.205.90(1)由上表数据可知,可用线性回归模型拟合与的关系.请用相关系数加以说明;(精确到0.01)(2)求出关于的线性回归方程,并估算该种机械设备使用8年的失效费参考公式:相关系数线性回归方程中斜率和截距最小二乘估计计算公式:,参考数据:,,21.(12分)在如图三角形数阵中第n行有n个数,表示第i行第j个数,例如,表示第4行第3个数.该数阵中每一行的第一个数从上到下构成以m为公差的等差数列,从第三行起每一行的数从左到右构成以m为公比的等比数列(其中).已知.(1)求m及;(2)记,求.22.(10分)已知函数在处取得极值确定a的值;若,讨论的单调性
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】分别在和中,求得的长度,再在中,利用余弦定理,即可求解.【详解】如图所示,可得,所以,在中,可得,在直角中,因为,所以,在中,由余弦定理可得,所以.故选:C.2、A【解析】直接由焦点位置及焦点到准线的距离写出标准方程即可.【详解】由焦点在轴的正半轴上知抛物线开口向上,又焦点到准线的距离为,故抛物线的标准方程是.故选:A.3、A【解析】求出函数的导函数,再求出,然后利用导数的几何意义求解作答.【详解】函数,求导得:,则,而,于是得:,即,所以曲线在点处的切线方程为.故选:A4、B【解析】由函数有两个零点排除选项A,C;再借助导数探讨函数的单调性与极值情况即可判断作答.【详解】由得,或,选项A,C不满足;由求导得,当或时,,当时,,于是得在和上都单调递增,在上单调递减,在处取极大值,在处取极小值,D不满足,B满足.故选:B5、B【解析】根据给定条件利用中点坐标公式及空间向量模长的坐标表示计算作答.【详解】因点,,所以线段的中点坐标为,.故选:B6、C【解析】分析得出,以点为坐标原点,、、所在直线分别为、、轴建立空间直角坐标系,利用空间向量法可求得异面直线与所成的角.【详解】由题意可知,,因为,,则,,因为平面,以点为坐标原点,、、所在直线分别为、、轴建立如下图所示的空间直角坐标系,则点、、、,,,,因此,异面直线与所成的角为.故选:C.7、B【解析】以为空间的一个基底,求出空间向量求的夹角即可判断作答.【详解】在四面体OABC中,不共面,则,令,依题意,,设与AC所成角的大小为,则,而,解得,所以与AC所成角的大小为.故选:B8、D【解析】先找临界情况当PQ与圆C相切时,,进而可得满足条件的点P形成的图形为大圆(包括内部),即求.【详解】当PQ与圆C相切时,,这种情况为临界情况,当P往外时无法找到点Q使,当P往里时,可以找到Q使,故满足条件的点P形成的图形为大圆(包括内部),如图,由圆,可知圆心,半径为1,则大圆的半径为,∴所有满足条件的点P构成图形的面积为.故选:D.【点睛】关键点点睛:本题的关键是找出临界情况时点所满足的条件,进而即可得到动点满足条件的图形,问题即可解决.9、C【解析】由题意画出几何体的图形,把、、、扩展为三棱柱,上下底面中心连线的中点与的距离为球的半径,由此能求出球的表面积【详解】把、、、扩展为三棱柱,上下底面中心连线的中点与的距离为球的半径,,,是正三角形,,,球的表面积为故选:C10、C【解析】分别判断的符号,从而可得出答案.【详解】解:对于A,,则,所以数列为递减数列,故A不符合题意;对于B,,则,所以数列为递减数列,故B不符合题意;对于C,,则,所以数列为递增数列,故C符合题意;对于D,,则,所以数列递减数列,故D不符合题意.故选:C.11、C【解析】由于数列为等差数列,所以,再由可得可以看成一元二次方程的两个根,由可知,所以,从而可求出,可得到通项公式.【详解】解:因为数列为等差数列,所以,因为,所以可以看成一元二次方程的两个根,因为,所以,所以,解得,所以故选:C【点睛】此题考查的是等差数列的通项公式和性质,属于基础题.12、A【解析】把直线方程由一般式化成斜截式,即可得到直线在轴上的截距.【详解】由,可得,则直线在轴上的截距为3.故选:A二、填空题:本题共4小题,每小题5分,共20分。13、【解析】由两圆公共弦方程,将两圆方程相减得到,结合已知列方程组求、,即可得答案.【详解】由题设,两圆方程相减可得:,即为公共弦,∴,可得,∴.故答案为:.14、【解析】利用点差法可求得的值,利用离心率公式的值.【详解】设点、,则,由已知可得,由题意可得,将两个等式相减得,所以,,因此,.故答案为:.15、0【解析】作出约束条件对应的可行域,当目标函数过点时,取得最小值,求解即可.【详解】作出约束条件对应的可行域,如下图阴影部分,联立,可得交点为,目标函数可化为,当目标函数过点时,取得最小值,即.故答案为:0.【点睛】本题考查线性规划,考查数形结合的数学思想的应用,考查学生的计算求解能力,属于基础题.16、12【解析】根据题意,先通过原始数据的平均数、方差及新数据的平均数求出k,进而求出新数据的方差.【详解】由题意,原式数据的平均数和方程分别为:,则新数据的平均数,于是新数据的方差.故答案为:12.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析(2)证明见解析【解析】(1)由三角形的中位线定理可证得MN∥AB,再由线面垂直的判定定理可证得结论,(2)由已知可得AB⊥BC,VC⊥AC,再由已知结合面面垂直的性质定理可得VC⊥平面ABC,从而有AB⊥VC,然后由线面垂直的判定定理可证得结论【小问1详解】证明:∵M,N分别为VA,VB的中点,∴MN∥AB,∵AB⊄平面CMN,MN⊂平面CMN,∴AB∥平面CMN【小问2详解】证明:∵△ABC和△VAC均是等腰直角三角形,AB=BC,AC=CV,∴AB⊥BC,VC⊥AC,∵平面VAC⊥平面ABC,平面VAC∩平面ABC=AC,∴VC⊥平面ABC,∵AB⊂平面ABC,∴AB⊥VC,又VC∩BC=C,∴AB⊥平面VBC18、(1)证明见解析;(2).【解析】(1)根据等腰三角形性质得PO垂直AC,再通过计算,根据勾股定理得PO垂直OB,最后根据线面垂直判定定理得结论;(2)根据条件建立空间直角坐标系,设立各点坐标,根据方程组解出平面PAM一个法向量,利用向量数量积求出两个法向量夹角,根据二面角与法向量夹角相等或互补关系列方程,解得M坐标,再利用向量数量积求得向量PC与平面PAM法向量夹角,最后根据线面角与向量夹角互余得结果【详解】(1)因为,为的中点,所以,且连结因为,所以为等腰直角三角形,且由知由知平面(2)如图,以为坐标原点,的方向为轴正方向,建立空间直角坐标系由已知得取平面的法向量设,则设平面的法向量为由得,可取所以.由已知得所以.解得(舍去),所以又,所以所以与平面所成角的正弦值为【点睛】利用法向量求解空间线面角的关键在于“四破”:第一,破“建系关”,构建恰当的空间直角坐标系;第二,破“求坐标关”,准确求解相关点的坐标;第三,破“求法向量关”,求出平面的法向量;第四,破“应用公式关”19、(1);(2).【解析】(1)根据给定条件列式求出数列的首项即可作答.(2)由(1)的结论求出,再借助裂项相消法计算作答.【小问1详解】因为数列是公比为2的等比数列,且是与的等差中项,则有,即,解得,所以.【小问2详解】由(1)知,,则,即有,所以.20、(1)答案见解析;(2);失效费为6.3万元【解析】(1)根据相关系数公式计算出相关系数可得结果;(2)根据公式求出和可得关于的线性回归方程,再代入可求出结果.【详解】(1)由题意,知,,∴结合参考数据知:因为与的相关系数近似为0.99,所以与的线性相关程度相当大,从而可以用线性回归模型拟合与的关系(2)∵,∴∴关于的线性回归方程为,将代入线性回归方程得万元,∴估算该种机械设备使用8年的失效费为6.3万元21、(1),;(2)【解析】(1)根据题意以m表示出,由即可求出,进而求出;(2)根据等差数列和等比数列的通项公式求出,再利用错位相减法即可求出.【详解】(1)由已知得,,,,,即,又,,,;(2)由(1)得,当时,,又,,满足,,,两式相减得,.【点
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- TCECS 1280-2023 机电工程装配式支吊架安装及验收规程
- 机器人算法工程师招聘面试题及答案
- 公务员面试落实面试题及答案
- 红狮集团招聘题库及答案
- 公务员面试磕磕绊绊面试题及答案
- 国家铁路集团秋招面试题及答案
- 国家融资担保基金秋招试题及答案
- 国家电投校招笔试题及答案
- 公务员考试熟悉考场试题及答案
- 歌尔股份招聘笔试题及答案
- 中国铁塔安全管理制度
- 产品防护管理制度
- 医院安全后勤管理制度
- 2025-2030中国高效消泡剂行业市场现状供需分析及投资评估规划分析研究报告
- T/CECS 10046-2019绿色建材评价树脂地坪材料
- T/CAQI 210-2021果蔬清洗装置
- 2025-2030中国富硒酵母行业营销策略与投资效益行业深度调研及投资前景预测研究报告
- 2023驾驶人数字化体检系统基本功能及技术要求
- 电气设备运行与检修-课件 实操课件 10kV柱上变压器的停送电操作
- 大学化学元素周期性试题及答案
- 江苏扬州大数据集团子公司招聘笔试题库2025
评论
0/150
提交评论