版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025-2026学年北京市朝阳陈经纶中学高二上数学期末调研试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.直线分别与轴,轴交于A,B两点,点在圆上,则面积的取值范围是()A B.C. D.2.等差数列中,,,则()A.1 B.2C.3 D.43.若函数有零点,则实数的取值范围是()A. B.C. D.4.已知向量,,若,则()A.1 B.C. D.25.随着城市生活节奏的加快,网上订餐成为很多上班族的选择,下表是某外卖骑手某时间段订餐数量与送餐里程的统计数据表:订餐数/份122331送餐里程/里153045现已求得上表数据的回归方程中的值为1.5,则据此回归模型可以预测,订餐100份外卖骑手所行驶的路程约为()A.155里 B.145里C.147里 D.148里6.已知椭圆的两焦点分别为,,P为椭圆上一点,且,则的面积等于()A.6 B.C. D.7.在等差数列中,为数列的前项和,,,则数列的公差为()A. B.C.4 D.8.一动圆与圆外切,而与圆内切,那么动圆的圆心的轨迹是()A.椭圆 B.双曲线C.抛物线 D.双曲线的一支9.命题“,使”的否定是()A.,有 B.,有C.,使 D.,使10.圆()上点到直线的最小距离为1,则A.4 B.3C.2 D.111.甲乙两名运动员在某项体能测试中的6次成绩统计如表:甲9816151514乙7813151722分别表示甲乙两名运动员这项测试成绩的平均数,分别表示甲乙两名运动员这项测试成绩的标准差,则有()A., B.,C., D.,12.某学校要从5名男教师和3名女教师中随机选出3人去支教,则抽取的3人中,女教师最多为1人的选法种数为()A.10 B.30C.40 D.46二、填空题:本题共4小题,每小题5分,共20分。13.如图是一个边长为4的正方形二维码,为了测算图中黑色部分的面积,在正方形区域内随机投掷1600个点,其中落入白色部分的有700个点,据此可估计黑色部分的面积为______________14.用秦九韶算法求函数,当时的值时,___________15.莱昂哈德·欧拉于1765年在他的著作《三角形的几何学》中首次提出定理:三角形的重心、垂心和外心共线.后来人们称这条直线为该三角形的欧拉线.已知的三个顶点坐标分别是,,,则的垂心坐标为______,的欧拉线方程为______16.已知为直线上的动点,为函数图象上的动点,则的最小值为______三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知双曲线的一条渐近线方程为,且双曲线C过点.(1)求双曲线C的标准方程;(2)过点M的直线与双曲线C的左右支分别交于A、B两点,是否存在直线AB,使得成立,若存在,求出直线AB的方程;若不存在,请说明理由.18.(12分)设点P是曲线上的任意一点,k是该曲线在点P处的切线的斜率(1)求k的取值范围;(2)求当k取最大值时,该曲线在点P处的切线方程19.(12分)设,分别是椭圆:的左、右焦点,的离心率为,点是上一点.(1)求椭圆的方程;(2)过点的直线交椭圆E于A,B两点,且,求直线的方程.20.(12分)已知椭圆C:过两点(1)求C的方程;(2)定点M坐标为,过C右焦点的直线与C交于P,Q两点,判断是否为定值?若是,求出该定值,若不是,请说明理由21.(12分)某厂A车间为了确定合理的工时定额,需要确定加工零件所花费的时间,为此作了五次试验,得到数据如下:加工零件的个数x12345加工的时间y(小时)1.52.43.23.94.5(1)在给定的坐标系中画出散点图;(2)求出y关于x的回归方程;(3)试预测加工9个零件需要多少时间?参考公式:,22.(10分)已知数列中,,().(1)求证:是等比数列,并求的通项公式;(2)数列满足,求数列的前项和为.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】把求面积转化为求底边和底边上的高,高就是圆上点到直线的距离.【详解】与x,y轴的交点,分别为,,点在圆,即上,所以,圆心到直线距离为,所以面积的最小值为,最大值为.故选:A2、B【解析】根据给定条件利用等差数列性质直接计算作答.【详解】在等差数列中,因,,而,于是得,解得,所以.故选:B3、A【解析】设,则函数有零点转化为函数的图象与直线有交点,利用导数判断函数的单调性,即可求出【详解】设,定义域为,则,易知为单调递增函数,且所以当时,,递减;当时,,递增,所以所以,即故选:A【点睛】本题主要考查根据函数有零点求参数的取值范围,意在考查学生的转化能力,属于基础题4、B【解析】由向量平行,先求出的值,再由模长公式求解模长.【详解】由,则,即则,所以则故选:B5、C【解析】由统计数据求样本中心,根据样本中心在回归直线上求得,即可得回归方程,进而估计时的y值即可.【详解】由题意:,,则,可得,故,当时,.故选:C6、B【解析】根据椭圆定义和余弦定理解得,结合三解形面积公式即可求解【详解】由与是椭圆上一点,∴,两边平方可得,即,由于,,∴根据余弦定理可得,综上可解得,∴的面积等于,故选:B7、A【解析】由已知条件列方程组求解即可【详解】设等差数列的公差为,因为,,所以,解得,故选:A8、A【解析】依据定义法去求动圆的圆心的轨迹即可解决.【详解】设动圆的半径为r,又圆半径为1,圆半径为8,则,,可得,又则动圆的圆心的轨迹是以为焦点长轴长为9的椭圆.故选:A9、B【解析】根据特称命题的否定是全称命题即可得正确答案【详解】存在量词命题的否定,只需把存在量词改成全称量词,并把后面的结论否定,所以“,使”的否定为“,有”,故选:B.10、A【解析】根据题意可得,圆心到直线的距离等于,即,求得,所以A选项是正确的.【点睛】判断直线与圆的位置关系的常见方法:(1)几何法:利用d与r的关系.(2)代数法:联立方程之后利用判断.(3)点与圆的位置关系法:若直线恒过定点且定点在圆内,可判断直线与圆相交.上述方法中常用的是几何法,点与圆的位置关系法适用于动直线问题11、B【解析】根据给定统计表计算、,再比较、大小判断作答.【详解】依题意,,,,,所以,.故选:B12、C【解析】可分为女教师0人,男教师3人和女教师1人,男教师2人两种情况,用组合数表示计算即得解【详解】女教师最多为1人即女教师为0人或者1人若女教师为0人,则男教师有3人,有种选择;若女教师为1人,则男教师2人,有种选择;故女教师最多为1人的选法种数为种故选:C二、填空题:本题共4小题,每小题5分,共20分。13、9【解析】先根据点数求解概率,再结合几何概型求解黑色部分的面积【详解】由题设可估计落入黑色部分概率设黑色部分的面积为,由几何概型计算公式可得解得故答案为:914、0【解析】利用秦九韶算法的定义计算即可.【详解】故答案为:015、①.##(0,1.5)②.【解析】由高线联立可得垂心,由垂心与重心可得欧拉线方程.【详解】由,可知边上的高所在的直线为,又,因此边上的高所在的直线的斜率为,所以边上的高所在的直线为:,即,所以,所以的垂心坐标为,由重心坐标公式可得的重心坐标为,所以的欧拉线方程为:,化简得.故答案为:;16、【解析】求得的导数,由题意可得与直线平行的直线和曲线相切,然后求出的值最小,设出切点,求出切线方程,再由两直线平行的距离公式,得到的最小值【详解】解:函数的导数为,设与直线平行的直线与曲线相切,设切点为,则,所以,所以,所以,所以,所以切线方程为,可得的最小值为,故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)存在,直线AB的方程为:或.【解析】(1)根据给定的渐近线方程及所过的点列式计算作答.(2)假定存在符合条件的直线AB,设出其方程,借助弦长公式计算判断作答.【小问1详解】依题意,,解得:,所以双曲线C的标准方程是.【小问2详解】假定存在直线AB,使得成立,显然不垂直于y轴,否则,设直线:,由消去x并整理得:,因直线与双曲线C的左右支分别交于A、B两点,设,于是得,则有,即或,因此,,解得,所以存在直线AB,使得成立,此时,直线AB的方程为:或.18、(1)(2)【解析】(1)先求导数再求最值即可求解答案;(2)由(1)确定切点,从而也确定的斜率就可以求切线.【小问1详解】设,因为,所以,所以k的取值范围为【小问2详解】由(1)知,此时,即,所以此时曲线在点P处的切线方程为19、(1)(2)或【解析】(1)按照所给的条件带入椭圆方程以及e的定义即可;(2)联立直线与椭圆方程,表达出,解方程即可.【小问1详解】由题意知,,且,解得,,所以椭圆的方程为.【小问2详解】由题意知,直线的斜率存在且不为0,故可设直线的方程为,设,.由得,则……①,……②,因为,所以,,由可得……③由①②③可得,解得,,所以直线的方程为或,故答案为:,或.20、(1);(2)为定值.【解析】(1)根据题意,列出的方程组,求解即可;(2)对直线的斜率是否存在进行讨论,当直线斜率存在时,设出直线的方程,联立椭圆方程,利用韦达定理,转化,求解即可.【小问1详解】因为椭圆过两点,故可得,解得,故椭圆方程为:.【小问2详解】由(1)可得:,故椭圆的右焦点的坐标为;当直线的斜率不存在时,此时直线的方程为:,代入椭圆方程,可得,不妨取,又,故.当直线的斜率存在时,设直线的方程为:,联立椭圆方程,可得:,设坐标为,故可得,则.综上所述,为定值.【点睛】本题考察椭圆方程的求解,以及椭圆中的定值问题;处理问题的关键是合理的利用韦达定理,将目标式进行转化,属中档题.21、(1)图见解析;(2);(3)小时.【解析】(1)根据表格数据在坐标系中描出对应点即可.(2)由表格中的数据代入公式算出,再求,即可得到方程;(3)中将自变量为9代入回归方程可得需用时间.【小问1详解】【小问2详解】由表中数据得:,,,,由x与y之间具有线性相关关系,根据公式知:,,∴回归直线方程为:【小问3详解】将代入回归直线方程得,,∴预测加工9个零件需要小时22、(1)(2)【解析】由已知式子变
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 会展策划师工作计划与活动执行流程
- 玩转电商直播高级工作法与策略
- 中国香文化讲师高级常见面试问题及应对技巧
- 市场推广费用报销与预算执行监控计划
- 如何成为一名的生产跟单员培训手册与自我发展指南
- 网络公关传播策略研究报告
- 提升小型汽车检验效率优化方案
- 县级体育馆飞盘运动专业人才队伍建设规划
- 年度安全生产与应急演练计划
- 幼儿园龙年开工通知书
- 高校思政说课课件
- 2025年教师考试时事政治考点热点题库含完整答案
- 球馆合伙协议合同模板
- 2024年陕西咸阳杨陵区招聘社区专职工作人员考试真题
- 2025中国光伏组件回收技术发展现状与循环经济战略报告
- 雨课堂在线学堂《军事历史-第二次世界大战史》单元考核测试答案
- 家庭宽带服务质量保障流程规范(2024版)
- 2025年法院书记员招聘考试笔试试题附答案
- 江西洪城水业环保有限公司面向社会公开招聘工勤岗工作人员【28人】考试笔试备考试题及答案解析
- 无锡五四班考试题及答案
- 医院重要事项请示报告制度及流程
评论
0/150
提交评论