版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
昌都市2025-2026学年数学高二第一学期期末质量检测试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.双曲线的焦距是()A.4 B.C.8 D.2.已知是等比数列,则()A.数列是等差数列 B.数列是等比数列C.数列是等差数列 D.数列是等比数列3.(一)单项选择函数在处的导数等于()A.0 B.C.1 D.e4.下列结论正确的个数为()①若,则;②若,则;③若,则;④若,则A.4 B.3C.2 D.15.“”是“函数在上有极值”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件6.王昌龄是盛唐著名的边塞诗人,被誉为“七绝圣手”,其《从军行》传诵至今“青海长云暗雪山,孤城遥望玉门关.黄沙百战穿金甲,不破楼兰终不还”,由此推断,最后一句“返回家乡”是“攻破楼兰”的()A.必要条件 B.充分条件C.充要条件 D.既不充分也不必要7.已知函数.若数列的前n项和为,且满足,,则的最大值为()A.9 B.12C.20 D.8.已知是双曲线C的两个焦点,P为C上一点,且,则C的离心率为()A. B.C. D.9.若,(),则,的大小关系是A. B.C. D.,的大小由的取值确定10.已知圆C1:(x+3)2+y2=1和圆C2:(x-3)2+y2=9,动圆M同时与圆C1及圆C2相外切,求动圆圆心M的轨迹方程()A.x2-=1(x≤-1) B.x2-=1C.x2-=1(x1) D.-x2=111.执行如图所示的程序框图,如果输入,那么输出的a值为()A.3 B.27C.-9 D.912.椭圆的焦点坐标为()A.和 B.和C.和 D.和二、填空题:本题共4小题,每小题5分,共20分。13.2021年7月24日,在东京奥运会女子10米气步枪决赛中,中国选手杨倩以251.8环的总成绩夺得金牌,为中国代表团摘得本届奥运会首金.已知杨倩其中5次射击命中的环数如下:10.8,10.6,10.6,10.7,9.8,则这组数据的方差为______14.若不等式的解集为,则________15.已知O为坐标原点,椭圆T:,过椭圆上一点P的两条直线PA,PB分别与椭圆交于A,B,设PA,PB的中点分别为D,E,直线PA,PB的斜率分别是,,若直线OD,OE的斜率之和为2,则的最大值为_______16.设函数,,若存在,成立,则实数的取值范围为__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知甲射击的命中率为0.7.乙射击的命中率为0.8,甲乙两人的射击互相独立.求:(1)甲乙两人同时击中目标的概率;(2)甲乙两人中至少有一个人击中目标的概率;(3)甲乙两人中恰有一人击中目标的概率18.(12分)长方体中,,点分别在上,且.(1)求证:平面;(2)求平面与平面所成角的余弦值.19.(12分)如图,在三棱柱中,平面ABC,,,,点D,E分别在棱和棱上,且,,M为棱的中点(1)求证:;(2)求直线AB与平面所成角的正弦值20.(12分)要设计一种圆柱形、容积为500mL的一体化易拉罐金属包装,如何设计才能使得总成本最低?21.(12分)已知圆的圆心在第一象限内,圆关于直线对称,与轴相切,被直线截得的弦长为.(1)求圆的方程;(2)若点,求过点的圆的切线方程.22.(10分)已知是等差数列,,.(1)求的通项公式;(2)若数列是公比为的等比数列,,求数列的前项和.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】根据,先求半焦距,再求焦距即可.【详解】解:由题意可得,,∴,故选:C【点睛】考查求双曲线的焦距,基础题.2、B【解析】取,可判断AC选项;利用等比数列的定义可判断B选项;取可判断D选项.【详解】若,则、无意义,A错C错;设等比数列的公比为,则,(常数),故数列是等比数列,B对;取,则,数列为等比数列,因为,,,且,所以,数列不是等比数列,D错.故选:B.3、B【解析】利用导数公式求解.【详解】因为函数,所以,所以,故选;B4、D【解析】根据常数函数的导数为0,可判断①;根据幂函数的求导公式,可判断②;根据指数函数以及对数函数的求导公式,可判断③④.【详解】由得:,故①错误;对于,,故,故②正确;对于,则,故③错误;对于,则,故④错误,故选:D5、B【解析】对求导,取得函数在上有极值的等价条件,再根据充分条件和必要条件的定义进行判断即可【详解】解:,则,令,可得,当时,,当时,,即在上单调递减,在上单调递增,所以,函数在处取得极小值,若函数在上有极值,则,,因为,但是由推不出,因此是函数在上有极值的必要不充分条件故选:B6、B【解析】由题意,“不破楼兰”可以推出“不还”,但是反过来“不还”的原因有多种,按照充分条件、必要条件的定义即可判断【详解】由题意,“不破楼兰终不还”即“不破楼兰”是“不还”的充分条件,即“不破楼兰”可以推出“不还”,但是反过来“不还”的原因有多种,比如战死沙场;即如果已知“还”,一定是已经“破楼兰”,所以“还”是“破楼兰”的充分条件故选:B7、C【解析】先得到及递推公式,要想最大,则分两种情况,负数且最小或为正数且最大,进而求出最大值.【详解】①,当时,,当时,②,所以①-②得:,整理得:,所以,或,当是公差为2的等差数列,且时,最小,最大,此时,所以,此时;当且是公差为2的等差数列时,最大,最大,此时,所以,此时综上:的最大值为20故选:C【点睛】方法点睛:数列相关的最值求解,要结合题干条件,使用不等式放缩,函数单调性或导函数等进行求解.8、A【解析】根据双曲线的定义及条件,表示出,结合余弦定理可得答案.【详解】因为,由双曲线的定义可得,所以,;因为,由余弦定理可得,整理可得,所以,即.故选:A【点睛】关键点睛:双曲线的定义是入手点,利用余弦定理建立间的等量关系是求解的关键.9、A【解析】∵且,∴,又,∴,故选A.10、A【解析】根据双曲线定义求解【详解】,则根据双曲线定义知的轨迹为的左半支故选:A第II卷(非选择题11、B【解析】分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是利用循环累乘值,并判断满足时输出的值【详解】解:模拟执行程序框图,可得,时,不满足条件,;不满足条件,;不满足条件,;满足条件,退出循环,输出的值为27故选:12、D【解析】本题是焦点在x轴的椭圆,求出c,即可求得焦点坐标.【详解】,可得焦点坐标为和.故选:D二、填空题:本题共4小题,每小题5分,共20分。13、128【解析】先求均值,再由方差公式计算【详解】由已知,所以,故答案为:14、11【解析】根据题意得到2与3是方程的两个根,再根据两根之和与两根之积求出,进而求出答案.【详解】由题意得:2与3是方程的两个根,则,,所以.故答案为:1115、【解析】设的坐标,用点差法求和与的关系同,与的关系,然后表示出,求得最大值【详解】设,,,则,两式相减得,∴,,则,同理,,又,∴,,当且仅当,即时等号成立,∴,故答案为:【点睛】方法点睛:本题考查直线与椭圆相交问题,考查椭圆弦中点问题.椭圆中涉及到弦的中点时,常常用点差法确定关系,即设弦端点为,弦中点为,把两点坐标代入椭圆方程,相减后可得16、【解析】由不等式分离参数,令,则求即可【详解】由,得,令,则当时,;当时,;所以在上单调递减,在上单调递增,故由于存在,成立,则故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)0.56(2)0.94(3)0.38【解析】(1)根据独立事件的概率公式计算;(2)结合对立事件的概率公式、独立事件的概率公式计算(3)利用互斥事件与独立事件的概率公式计算【小问1详解】设甲击中目标为事件,乙击中目标为事件,甲乙两人同时击中目标的概率;【小问2详解】甲乙两人中至少有一个人击中目标的概率为;【小问3详解】甲乙两人中恰有一人击中目标的概率为18、(1)证明见解析.(2)【解析】(1)根据线面垂直的性质和判定可得证;(2)以为坐标原点,分以所在直线为轴建立如图所示的空间直角坐标系,由面面角的空间向量求解方法可得答案.【小问1详解】证明:长方体中,平面,又平面,又平面,又平面同理可证,而平面,平面【小问2详解】解:以为坐标原点,分以所在直线为轴建立如图所示的空间直角坐标系.从而,,,由(1)知,为平面的一个法向量,设平面的法向量为,则,,则,从而,令,则,得平面的一个法向量为由图示得平面与平面所成的角为锐角,平面与平面所成的角的余弦值为19、(1)证明见解析;(2)【解析】(1)由线面垂直、等腰三角形的性质易得、,再根据线面垂直的判定及性质证明结论;(2)构建空间直角坐标系,确定相关点坐标,进而求的方向向量、面的法向量,应用空间向量夹角的坐标表示求直线与平面所成角的正弦值.【小问1详解】在三棱柱中,平面,则平面,由平面,则,,则,又为的中点,则,又,则平面,由平面,因此,.【小问2详解】以为原点,以,,为轴、轴、轴的正方向建立空间直角坐标系,如图所示,可得:,,,,,,.∴,,,,设为面的法向量,则,令得,设与平面所成角为,则,∴直线与平面所成角的正弦值为.20、当圆柱底面半径为,高为时,总成本最底.【解析】设圆柱底面半径为cm,高为cm,圆柱表面积为Scm2,进而根据体积得到,然后求出表面积,进而运用导数的方法求得表面积的最小值,此时成本最小.【详解】设圆柱底面半径为cm,高为cm,圆柱表面积为Scm2,每平方厘米金属包装造价为元,由题意得:,则,表面积造价,,令,得,令,得,的单调递减区间为,递增区间为,当圆柱底面半径为,高为时,总成本最底.21、(1)(2)或【解析】(1)结合点到直线的距离公式、弦长公式求得,由此求得圆的方程.(2)根据过的圆的切线的斜率是否存在进行分类讨论,结合点到直线的距离公式求得切线方程.【小问1详解】由题意,设圆的标准方程为:,圆关于直线对称,圆与轴相切:…①点到的距离为:,圆被直线截得的弦长为,,结合①有:,,又,,,圆的标准方程
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 两个阳台打通协议书
- 临时用地终止协议书
- 供水二次加压调度与应急处理方案
- 公会签线下合同协议
- 入驻淘宝的协议合同
- 代购车合同协议模板
- 全国脱贫攻坚协议书
- 位餐厅供货合同范本
- 兵团支医面试真题及答案
- 供应链管理知识体系及面试题库
- 电子商务与实体店融合模式可行性分析报告
- 建筑施工安全管理培训课件
- 国开学位英语考试真题及答案
- 2025年湖南省公务员录用考试《行测》真题及答案
- 水厂自动化控制系统建设方案
- 订单实施跟踪管理办法
- 汽车金融行业车贷评估与风控模型建设方案
- 坚定马克思主义信仰课件
- 2025年事业单位招聘考试综合类职业能力倾向测验押题卷
- 工程监理服务费测算方法与案例解析
- 茅台酒买卖合同(2025版)
评论
0/150
提交评论