版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
广西壮族自治区桂林市2025年高二数学第一学期期末学业水平测试试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.在四棱锥中,底面ABCD是正方形,E为PD中点,若,,,则()A. B.C. D.2.双曲线的左、右焦点分别为、,点P在双曲线右支上,,,则C的离心率为()A. B.2C. D.3.已知x,y满足约束条件,则的最大值为()A.3 B.C.1 D.4.如图,在直三棱柱中,,,E是的中点,则直线BC与平面所成角的正弦值为()A. B.C. D.5.已知抛物线上一点到焦点的距离为3,准线为l,若l与双曲线的两条渐近线所围成的三角形面积为,则双曲线C的离心率为()A.3 B.C. D.6.已知为坐标原点,点的坐标为,点的坐标满足,则的最小值为()A B.C. D.47.如图,在平行六面体中,AC与BD的交点为M.设,则下列向量中与相等的向量是()A. B.C. D.8.已知抛物线的焦点为F,且点F与圆上点的距离的最大值为6,则抛物线的准线方程为()A. B.C. D.9.设平面向量,,其中m,,记“”为事件A,则事件A发生的概率为()A. B.C. D.10.若变量x,y满足约束条件,则目标函数最大值为()A.1 B.-5C.-2 D.-711.已知正方形的四个顶点都在椭圆上,若的焦点F在正方形的外面,则的离心率的取值范围是()A. B.C. D.12.直线的倾斜角为()A.-30° B.60°C.150° D.120°二、填空题:本题共4小题,每小题5分,共20分。13.椭圆的两焦点为,,P为C上的一点(P与,不共线),则的周长为______.14.不等式的解集是_______________15.已知直线与直线垂直,则实数的值为___________.16.如图的一系列正方形图案称为谢尔宾斯基地毯,图案的做法是:把一个正方形分成9个全等的小正方形,对中间的一个小正方形进行着色得到第1个图案(图1);在第1个图案中对没有着色的小正方形再重复以上做法得到第2个图案(图2);以此类推,每进行一次操作,就得到一个新的正方形图案,设原正方形的边长为1,记第n个图案中所有着色的正方形的面积之和为,则数列的通项公式______三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,在直三棱柱中,,,,,分别为,的中点(1)求证:;(2)求直线与平面所成角的正弦值18.(12分)已知函数(1)解关于的不等式;(2)若不等式在上有解,求实数的取值范围19.(12分)已知点F为抛物线的焦点,点在抛物线上,且.(1)求该抛物线的方程;(2)若点A在第一象限,且抛物线在点A处的切线交y轴于点M,求的面积.20.(12分)已知抛物线:的焦点是圆与轴的一个交点.(1)求抛物线的方程;(2)若过点的直线与抛物线交于不同的两点A、B,О为坐标原点,证明:.21.(12分)在数列中,,点在直线上.(1)求的通项公式;(2)记的前项和为,且,求数列的前项和.22.(10分)在棱长为1的正方体ABCD-A1B1C1D1中,求平面ACD1的一个法向量.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】根据向量线性运算法则计算即可.【详解】故选:C2、C【解析】由,所以为直角三角形,根据双曲线的定义结合勾股定理可得答案.【详解】由,所以为直角三角形.,根据双曲线的定义可得所以,即,即,所以故选:C3、A【解析】由题意首先画出可行域,然后结合目标函数的几何意义求解最大值即可.【详解】绘制不等式组表示的平面区域如图所示,结合目标函数的几何意义可知目标函数在点A处取得最大值,联立直线方程:,可得点A的坐标为:,据此可知目标函数的最大值为:.故选:A【点睛】方法点睛:求线性目标函数的最值,当时,直线过可行域且在y轴上截距最大时,z值最大,在y轴截距最小时,z值最小;当时,直线过可行域且在y轴上截距最大时,z值最小,在y轴上截距最小时,z值最大.4、D【解析】以,,的方向分別为x轴、y轴、z轴的正方向,建立空间直角坐标系,利用向量法即可求出答案.【详解】解:由题意知,CA,CB,CC1两两垂直,以,,的方向分別为x轴、y轴、z轴的正方向,建立如图所示的空间直角坐标系,则,,,,设平面的法向量为,则令,得.因为,所以,故直线BC与平面所成角的正弦值为.故选:D.5、C【解析】先由已知结合抛物线的定义求出,从而可得抛物线的准线方程,则可求出准线l与两条渐近线的交点分别为,然后由题意可得,进而可求出双曲线的离心率详解】依题意,抛物线准线,由抛物线定义知,解得,则准线,双曲线C的两条渐近线为,于是得准线l与两条渐近线的交点分别为,原点为O,则面积,双曲线C的半焦距为c,离心率为e,则有,解得故选:C6、B【解析】由数量积的坐标运算求得,令,化为直线方程的斜截式,数形结合得到最优解,把最优解的坐标代入目标函数得答案【详解】解:根据题意可得,、,所以,令,由约束条件作出可行域如下图所示,由得,即,由,得,由图可知,当直线过时,直线在轴上的截距最小,有最小值为,即,所以故选:B7、B【解析】根据代入计算化简即可.【详解】故选:B.8、D【解析】先求得抛物线的焦点坐标,再根据点F与圆上点的距离的最大值为6求解.【详解】因为抛物线的焦点为F,且点F与圆上点的距离的最大值为6,所以,解得,所以抛物线准线方程为,故选:D9、D【解析】由向量的数量积公式结合古典概型概率公式得出事件A发生的概率.【详解】由题意可知,即,因为所有的基本事件共有种,其中满足的为,,只有1种,所以事件A发生的概率为.故选:D10、A【解析】作出不等式组对应的平面区域,利用目标函数的几何意义,进行求最值即可【详解】解:由得作出不等式组对应的平面区域如图(阴影部分平移直线,由图象可知当直线,过点时取得最大值,由,解得,所以代入目标函数,得,故选:A11、C【解析】如图由题可得,进而可得,即求.【详解】如图根据对称性,点D在直线y=x上,可设,则,∴,可得,,即,又解得.故选:C.12、C【解析】根据直线斜率即可得倾斜角.【详解】设直线的倾斜角为由已知得,所以直线的斜率,由于,故选:C.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】结合椭圆的定义求得正确答案.【详解】椭圆方程为,所以,所以三角形的周长为.故答案为:14、或【解析】将分式不等式,转化为一元二次不等式求解【详解】因为,所以,解得或.故答案为:或【点睛】本题主要考查分式不等式的解法,还考查了运算求解的能力,属于基础题.15、【解析】由直线垂直的充要条件列式计算即可得答案.【详解】解:因为直线与直线垂直,所以,解得故答案为:16、【解析】根据题意,归纳总结,结合等比数列的前项和公式,即可求得的通项公式.【详解】结合已知条件,归纳总结如下:第一个图案中,着色正方形的面积即;第二个图案中,新着色的正方形面积是,故着色正方形的面积即;第三个图案中,新着色的正方形面积是,故着色正方形的面积即;第个图案中,新着色的正方形面积是,故着色正方形的面积即.故.故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析(2)【解析】(1)利用空间向量求出空间直线的向量积,即可证明两直线垂直.(2)利用空间向量求直线与平面所成空间角的正弦就是就出平面的法向量与直线的方向向量之间夹角的余弦即可.【小问1详解】如图,以为坐标原点,,,所在直线为,,轴,建立空间直角坐标系,则,,,,,因为,,所以,即;【小问2详解】设平面的法向量为因为,由,得,令,则所以平面的一个法向量为,又所以故直线与平面所成角的正弦值为18、(1)当时,或;当时,;当时,或(2)【解析】(1)由题意得对的值进行分类讨论可得不等式的解集;(2)将条件转化为,,再利用基本不等式求最值可得的取值范围;【小问1详解】,即,所以,所以,①当时不等式的解为或,②当时不等式的解为,③当时不等式的解为或,综上:原不等式的解集为当时或,当时,当时或【小问2详解】不等式在上有解,即在上有解,所以在上有解,所以,因为,所以,当且仅当,即时取等号,所以.19、(1);(2)10.【解析】(1)由根据抛物线的定义求出可得抛物线方程;(2)求出抛物线过点A的切线,得出点M的坐标即可求三角形面积.【小问1详解】由抛物线的定义可知,即,抛物线的方程为.【小问2详解】,且A在第一象限,,即A(4,4),显然切线的斜率存在,故可设其方程为,由,消去得,即,令,解得,切线方程为.令x=0,得,即,又,,.20、(1)(2)证明见解析【解析】(1)由圆与轴的交点分别为,可得抛物线的焦点为,从而即可求解;(2)设直线为,联立抛物线方程,由韦达定理及,求出即可得证.【小问1详解】解:由题意知,圆与轴的交点分别为,则抛物线的焦点为,所以,所以抛物线方程为;【小问2详解】证明:设直线为,联立方程,有,所以,所以,所以.21、(1)(2)【解析】(1)由定义证明数列是等
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年中国泵连金属软管行业市场前景预测及投资价值评估分析报告
- 2026年中国保温杯杯盖行业市场前景预测及投资价值评估分析报告
- 儿童绘本核心要素解析
- 私教课训练计划
- 如何讲入院宣教
- 高一语文期末试题详解
- 2026年蒸馏仪行业市场专项调研及投资前景可行性预测报告
- 2026年中国抗震球墨铸铁管行业市场规模及投资前景预测分析报告
- 冶金设备高级点检员岗位晋升所需关键能力与准备
- 铝制模组生产线项目建筑工程方案
- 华为ICT大赛中国区(实践赛)-昇腾AI赛道往年考试真题(附答案)
- 2025年国家工作人员学法用法考试题(附答案)
- 人防防化施工方案
- 2025年南陵县县属国有企业公开招聘工作人员55人笔试考试参考试题及答案解析
- 2025年农商银行面试题目及答案
- 普通高中化学课程标准(2025年版)
- 2025年党员干部党规党纪知识竞赛测试题及答案(完整版)
- 国开(甘肃)2024年春《地域文化(专)》形考任务1-4终考答案
- GB/T 34306-2017干旱灾害等级
- GB/T 29618.2-2017现场设备工具(FDT)接口规范第2部分:概念和详细描述
- GB/T 21838.1-2019金属材料硬度和材料参数的仪器化压入试验第1部分:试验方法
评论
0/150
提交评论