浙江省杭州市余杭高级中学2025-2026学年高二数学第一学期期末联考试题含解析_第1页
浙江省杭州市余杭高级中学2025-2026学年高二数学第一学期期末联考试题含解析_第2页
浙江省杭州市余杭高级中学2025-2026学年高二数学第一学期期末联考试题含解析_第3页
浙江省杭州市余杭高级中学2025-2026学年高二数学第一学期期末联考试题含解析_第4页
浙江省杭州市余杭高级中学2025-2026学年高二数学第一学期期末联考试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

浙江省杭州市余杭高级中学2025-2026学年高二数学第一学期期末联考试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.设椭圆C:的左、右焦点分别为、,P是C上的点,⊥,∠=,则C的离心率为A. B.C. D.2.已知椭圆的长轴长,短轴长,焦距长成等比数列,则椭圆离心率为()A. B.C. D.3.已知抛物线的焦点为,点在抛物线上,且,则的横坐标为()A.1 B.C.2 D.34.现有4本不同的书全部分给甲、乙、丙3人,每人至少一本,则不同的分法有()A.12种 B.24种C.36种 D.48种5.中国古代《易经》一书中记载,人们通过在绳子上打结来记录数据,即“结绳计数”,如图,一位古人在从右到左(即从低位到高位)依次排列的红绳子上打结,满六进一,用6来记录每年进的钱数,由图可得,这位古人一年收入的钱数用十进制表示为()A.180 B.179C.178 D.1776.如图,已知直线AO垂直于平面,垂足为O,BC在平面内,AB与平面所成角的大小为,,,则异面直线AB与OC所成角的余弦值为()A. B.C. D.7.已知直线是圆的对称轴,过点A作圆C的一条切线,切点为B,则|AB|=()A.1 B.2C.4 D.88.若实数x,y满足不等式组,则的最小值为()A. B.0C. D.29.如图,在平行六面体中,为与的交点,若,,,则的值为()A. B.C. D.10.已知圆的方程为,则实数m的取值范围是()A. B.C. D.11.函数在上的最大值是A. B.C. D.12.已知角的顶点与坐标原点重合,始边与x轴的非负半轴重合,角终边上有一点(1,2),为锐角,且,则()A.-18 B.-6C. D.二、填空题:本题共4小题,每小题5分,共20分。13.在一村庄正西方向处有一台风中心,它正向东北方向移动,移动速度的大小为,距台风中心以内的地区将受到影响,若台风中心的这种移动趋势不变,则村庄所在地大约有_______小时会受到台风的影响.(参考数据:)14.已知数列的前n项和,则其通项公式______15.在空间四边形ABCD中,AD=2,BC=2,E,F分别是AB,CD的中点,EF=,则异面直线AD与BC所成角的大小为____.16.平行六面体中,底面是边长为1的正方形,,则对角线的长度为___.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)设等差数列的前项和为,已知.(1)求数列的通项公式;(2)当为何值时,最大,并求的最大值.18.(12分)已知圆心为的圆,满足下列条件:圆心在轴上,与直线相切,且被轴截得的弦长为,圆的面积小于(1)求圆的标准方程;(2)设过点的直线与圆交于不同的两点、,以、为邻边作平行四边形.是否存在这样的直线,使得直线与恰好平行?如果存在,求出的方程,如果不存在,请说明理由19.(12分)已知:,:.(1)当时,求实数的取值范围;(2)若是的充分不必要条件,求实数的取值范围.20.(12分)设函数.(1)当k=1时,求函数的单调区间;(2)当时,求函数在上的最小值m和最大值M.21.(12分)已知函数(1)解不等式;(2)若不等式对恒成立,求实数m的取值范围22.(10分)解下列不等式:(1);(2).

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】详解】由题意可设|PF2|=m,结合条件可知|PF1|=2m,|F1F2|=m,故离心率e=选D.点睛:解决椭圆和双曲线的离心率的求值及范围问题其关键就是确立一个关于的方程或不等式,再根据的关系消掉得到的关系式,而建立关于的方程或不等式,要充分利用椭圆和双曲线的几何性质、点的坐标的范围等.2、A【解析】由题意,,结合,求解即可【详解】∵椭圆的长轴长,短轴长,焦距长成等比数列∴∴又∵∴∴,即∴e=又在椭圆e>0∴e=故选:A3、C【解析】利用抛物线的定义转化为到准线的距离,即可求得.【详解】抛物线的焦点坐标为,准线方程为,,∴,故选:C.4、C【解析】先把4本书按2,1,1分为3组,再全排列求解.【详解】先把4本书按2,1,1分为3组,再全排列,则有种分法,故选:C5、D【解析】由于从右到左依次排列的绳子上打结,满六进一,所以从右到左的数分别为、、,然后把它们相加即可.【详解】(个).所以古人一年收入的钱数用十进制表示为个.故选:D.6、B【解析】建立空间直角坐标系,求出相关点的坐标,求出向量的坐标,再利用向量的夹角公式计算即可.【详解】如图,以O为坐标原点,过点O作OB的垂线为x轴,OB为y轴,OA为z轴,建立空间直角坐标系,设,则,,则,,,,,设的夹角为,则,所以异面直线AB与OC所成角的余弦值为,故选:B.7、C【解析】首先将圆心坐标代入直线方程求出参数a,求得点A的坐标,由切线与圆的位置关系构造直角三角形从而求得.【详解】圆即,圆心为,半径为r=3,由题意可知过圆的圆心,则,解得,点A坐标为,,切点为B则,故选:C【点睛】本题考查直线与圆的位置关系,属于基础题.8、A【解析】画出可行域,令,则,结合图形求出最小值,即可得解;【详解】解:画出不等式组,表示的平面区域如图阴影部分所示,由,解得,即,令,则.结合图形可知当过点时,取得最小值,且,即故选:A9、D【解析】将用基底表示,然后利用空间向量数量积的运算性质可求得结果.【详解】因为四边形为平行四边形,且,则为的中点,,则.故选:D10、C【解析】根据可求得结果.【详解】因为表示圆,所以,解得.故选:C【点睛】关键点点睛:掌握方程表示圆的条件是解题关键.11、D【解析】求出函数的导数,解关于导函数的不等式,求出函数的单调区间即可,结合函数的单调性求出的最大值即可【详解】函数的导数令可得,可得上单调递增,在单调递减,函数在上的最大值是故选D【点睛】本题考查了函数的单调性、最值问题,是一道中档题12、A【解析】由终边上的点可得,由同角三角函数的平方、商数关系有,再应用差角、倍角正切公式即可求.【详解】由题设,,,则,又,,所以.故选:A二、填空题:本题共4小题,每小题5分,共20分。13、4【解析】结合勾股定理求得正确答案.【详解】如图,设村庄为A,开始台风中心的位置为B,台风路径为直线,因为点A到直线的距离为,∴村庄所在地受到台风影响的时间约为:(小时).故答案为:本卷包括必考题和选考题两部分.第17题~第21题为必考题,每个试题考生都必须作答第22题~第23题为选考题,考生根据要求作答14、【解析】利用当时,,可求出此时的通项公式,验证n=1时是否适合,可得答案.【详解】当时,,当时,不适合上式,∴,故答案为:.15、【解析】由已知找到异面直线所成角的平面角,再运用余弦定理可得答案.【详解】解:设BD的中点为O,连接EO,FO,所以,则∠EOF(或其补角)就是异面直线AD,BC所成的角的平面角,又因为EO=AD=1,FO=BC=,EF=.根据余弦定理得=-,所以∠EOF=150°,异面直线AD与BC所成角的大小为30°.故答案为:30°.16、2【解析】利用,两边平方后,利用向量数量积计算公式,计算得.【详解】对两边平方并化简得,故.【点睛】本小题主要考查空间向量的加法和减法运算,考查空间向量数量积的表示,属于中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)n为6或7;126【解析】(1)设等差数列的公差为d,利用等差数列的通项公式求解;(2)由,利用二次函数的性质求解.【小问1详解】解:设等差数列的公差为d,因为.所以,解得,所以;【小问2详解】,当或7时,最大,的最大值是126.18、(1);(2)不存在,理由见解析.【解析】(1)设圆心,设圆的半径为,可得出,根据已知条件可得出关于实数的方程,求出的值,可得出的值,进而可得出圆的标准方程;(2)分析可知直线的斜率存在,可设直线的方程为,设点、,将直线的方程与圆的方程联立,由可求得的取值范围,列出韦达定理,分析可得,可求得点的坐标,由已知可得出,求出的值,检验即可得出结论.【小问1详解】解:设圆心,设圆的半径为,则,由题意可得,由勾股定理可得,则,由题意可得,解得,则,因此,圆的标准方程为.【小问2详解】解:若直线的斜率不存在,此时直线与轴重合,则、、三点共线,不合乎题意.所以,直线的斜率存在,可设直线的方程为,设点、,联立,可得,,解得或,由韦达定理可得,,则,因为四边形为平行四边形,则,因为,则,则,解得,因为或,因此,不存直线,使得直线与恰好平行.19、(1);(2).【解析】(1)将代入即可求解;(2)首先结合已知条件分别求出命题和的解,写出,然后利用充分不必要的特征即可求解.【详解】(1)由题意可知,,解得,故实数的取值范围为;(2)由,解得或,由,解得,故命题:或;命题:,从而:或,因为是的充分不必要条件,所以或或,从而,解得,故实数的取值范围为.20、(1)增区间为(2),【解析】(1)求导,由判别式可判断导数符号,然后可得;(2)求导,求导数零点,比较函数极值和端点函数值,结合单调性可得.【小问1详解】因为,所以,,因为,所以恒成立所以的增区间为.【小问2详解】当时,,令,解得,当时,,当时,,当时,所以,函数在上单调递增,在上

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论