2025年山西省朔州市第二中学高二数学第一学期期末检测模拟试题含解析_第1页
2025年山西省朔州市第二中学高二数学第一学期期末检测模拟试题含解析_第2页
2025年山西省朔州市第二中学高二数学第一学期期末检测模拟试题含解析_第3页
2025年山西省朔州市第二中学高二数学第一学期期末检测模拟试题含解析_第4页
2025年山西省朔州市第二中学高二数学第一学期期末检测模拟试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

付费下载

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025年山西省朔州市第二中学高二数学第一学期期末检测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.气象台正南方向的一台风中心,正向北偏东30°方向移动,移动速度为,距台风中心以内的地区都将受到影响,若台风中心的这种移动趋势不变,气象台所在地受到台风影响持续时间大约是()A. B.C. D.2.彬塔,又称开元寺塔、彬县塔,民间称“雷峰塔”,位于陕西省彬县城内西南紫薇山下.某同学为测量彬塔高度,选取了与塔底在同一水平面内的两个测量基点与,现测得,,,在点测得塔顶的仰角为60°,则塔高()A.30m B.C. D.3.圆与圆的公切线的条数为()A.1 B.2C.3 D.44.已知m,n表示两条不同的直线,表示平面,则下列说法正确的是()A.若,,则 B.若,,则C.若,,则 D.若,,则5.已知圆过点,,且圆心在轴上,则圆的方程是()A. B.C. D.6.已知直线l与圆交于A,B两点,点满足,若AB的中点为M,则的最大值为()A. B.C. D.7.已知直线与直线垂直,则实数()A.10 B.C.5 D.8.已知向量,则下列结论正确的是()A.B.C.D.9.已知数列满足,,.设,若对于,都有恒成立,则最大值为A.3 B.4C.7 D.910.若直线l的倾斜角是钝角,则l的方程可能是()A. B.C. D.11.已知椭圆的两个焦点分别为,且平行于轴的直线与椭圆交于两点,那么的值为()A. B.C. D.12.如果在一实验中,测得的四组数值分别是,则y与x之间的回归直线方程是()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知双曲线左、右焦点分别为,,点P是双曲线左支上一点且,则______14.在空间直角坐标系中,已知点A,若点P满足,则_______15.当为任意实数时,直线恒过定点,则以点C为圆心,半径为圆的标准方程______16.设抛物线C:的焦点为F,准线l与x轴的交点为M,P是C上一点,若|PF|=5,则|PM|=__.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图所示,在直三棱柱中,是等腰直角三角形,(1)证明:;(2)若点E是棱的中点,求平面与平面所成锐二面角的余弦值18.(12分)已知双曲线C:(,)的一条渐近线的方程为,双曲线C的右焦点为,双曲线C的左、右顶点分别为A,B(1)求双曲线C的方程;(2)过右焦点F的直线l与双曲线C的右支交于P,Q两点(点P在x轴的上方),直线AP的斜率为,直线BQ的斜率为,证明:为定值19.(12分)已知函数,若函数处取得极值(1)求,的值;(2)求函数在上的最大值和最小值20.(12分)已知双曲线,直线l与交于P、Q两点(1)若点是双曲线的一个焦点,求的渐近线方程;(2)若点P的坐标为,直线l的斜率等于1,且,求双曲线的离心率21.(12分)已知椭圆()的左、右焦点为,,,离心率为(1)求椭圆的标准方程(2)的左顶点为,过右焦点的直线交椭圆于,两点,记直线,,的斜率分别为,,,求证:22.(10分)某企业新研发了一种产品,产品的成本由原料成本及非原料成本组成.每件产品的非原料成本(元)与生产该产品的数量(千件)有关,经统计得到如下数据:x12345678y56.53122.7517.815.9514.51312.5根据以上数据绘制了散点图观察散点图,两个变量间关系考虑用反比例函数模型和指数函数模型分别对两个变量的关系进行拟合.已求得用指数函数模型拟合的回归方程为,与x的相关系数.(1)用反比例函数模型求y关于x的回归方程;(2)用相关系数判断上述两个模型哪一个拟合效果更好(精确到0.001),并用其估计产量为10千件时每件产品非原料成本;(3)根据企业长期研究表明,非原料成本y服从正态分布,用样本平均数作为的估计值,用样本标准差s作为的估计值,若非原料成本y在之外,说明该成本异常,并称落在之外的成本为异样成本,此时需寻找出现异样成本的原因.利用估计值判断上述非原料成本数据是否需要寻找出现异样成本的原因?参考数据(其中):0.340.1151.531845777.55593.0630.70513.9参考公式:对于一组数据,其回归直线的斜率和截距的最小二乘估计公式分别为:,,相关系数.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】利用余弦定理进行求解即可.【详解】如图所示:设台风中心为,,小时后到达点处,即,当时,气象台所在地受到台风影响,由余弦定理可知:,于是有:,解得:,所以气象台所在地受到台风影响持续时间大约是,故选:D2、D【解析】在△中有,再应用正弦定理求,再在△中,即可求塔高.【详解】由题设知:,又,△中,可得,在△中,,则.故选:D3、D【解析】公切线条数与圆与圆的位置关系是相关的,所以第一步需要判断圆与圆的位置关系.【详解】圆的圆心坐标为,半径为3;圆的圆心坐标为,半径为1,所以两圆的心心距为,所以两圆相离,公切线有4条.故选:D.4、D【解析】根据空间直线与平面间的位置关系判断【详解】若,,也可以有,A错;若,,也可以有,B错;若,,则或,C错;若,,则,这是线面垂直的判定定理之一,D正确故选:D5、B【解析】根据圆心在轴上,设出圆的方程,把点,的坐标代入圆的方程即可求出答案.【详解】因为圆的圆心在轴上,所以设圆的方程为,因为点,在圆上,所以,解得,所以圆的方程是.故选:B.6、A【解析】设,,则、,由点在圆上可得,再由向量垂直的坐标表示可得,进而可得M的轨迹为圆,即可求的最大值.【详解】设,中点,则,,又,,则,所以,又,则,而,,所以,即,综上,,整理得,即为M的轨迹方程,所以在圆心为,半径为的圆上,则.故选:A.【点睛】关键点点睛:由点圆位置、中点坐标公式及向量垂直的坐标表示得到关于的轨迹方程.7、B【解析】根据两直线垂直,列出方程,即可求解.【详解】由题意,直线与直线垂直,可得,解得.故选:B.8、D【解析】由题可知:,,,故选;D9、A【解析】整理数列的通项公式有:,结合可得数列是首项为,公比为的等比数列,则,,原问题即:恒成立,当时,,即>3,综上可得:的最大值为3.本题选择A选项点睛:数列的递推关系是给出数列的一种方法,根据给出的初始值和递推关系可以依次写出这个数列的各项,由递推关系求数列的通项公式,常用的方法有:①求出数列的前几项,再归纳猜想出数列的一个通项公式;②将已知递推关系式整理、变形,变成等差、等比数列,或用累加法、累乘法、迭代法求通项10、A【解析】根据直线方程,求得直线斜率,再根据倾斜角和斜率的关系,即可判断和选择.【详解】若直线的倾斜角为,则,当时,为钝角,当,,当,为锐角;当不存在时,倾斜角为,对A:,显然倾斜角为钝角;对B:,倾斜角为锐角;对C:,倾斜角为锐角;对D:不存在,此时倾斜角为直角.故选:A.11、A【解析】根据椭圆的方程求出,再由椭圆的对称性及定义求解即可.【详解】由椭圆的对称性可知,,所以,又椭圆方程为,所以,解得,所以,故选:A12、B【解析】根据已知数据求样本中心点,由样本中心点在回归直线上,将其代入各选项的回归方程验证即可.【详解】由题设,,因为回归直线方程过样本点中心,A:,排除;B:,满足;C:,排除;D:,排除.故选:B二、填空题:本题共4小题,每小题5分,共20分。13、3【解析】根据双曲线方程求出,再根据双曲线的定义可知,即可得到、,再由正弦定理计算可得;【详解】解:因为双曲线为,所以、,因为点P是双曲线左支上一点且,所以,所以,,在中,由正弦定理可得,所以;故答案为:14、【解析】设,表示出,,根据即可得到方程组,解得、、,即可求出的坐标,即可得到的坐标,最后根据向量模的坐标表示计算可得;【详解】解:设,所以,,因为,所以,所以,解得,即,所以,所以;故答案为:15、【解析】先求得直线过的定点C,再写出圆的标准方程.【详解】直线可化为,则,解得,所以直线恒过定点,所以以点C为圆心,半径为圆的标准方程是,故答案为:16、【解析】根据抛物线的性质及抛物线方程可求坐标,进而得解.【详解】由抛物线的方程可得焦点,准线,由题意可得,设,有抛物线的性质可得:,解得x=4,代入抛物线的方程可得,所以,故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析(2)【解析】(1)根据线面垂直的判定定理证出平面,即可证得;(2)以A为原点,分别以所在直线为x轴,y轴,z轴建立空间直角坐标系,根据二面角的向量公式即可求出【小问1详解】如图,连接,由已知可得四边形是正方形,所以在直三棱柱中,平面平面,交线为,在中,可知,所以平面,于因为,所以平面,而平面,所以【小问2详解】如图所示,以A为原点,分别以所在直线为x轴,y轴,z轴建立空间直角坐标系,则,于是设平面的法向量为,则,可取而平面的一个法向量为,所以故平面与平面所成锐二面角的余弦值为18、(1);(2)证明见解析.【解析】(1)由题可得,,即求;(2)由题可设直线方程与双曲线方程联立,利用韦达定理法即证【小问1详解】由题意可知在双曲线C中,,,,解得所以双曲线C的方程为;【小问2详解】证法一:由题可知,设直线,,,由,得,则,,∴,,;当直线的斜率不存在时,,此时.综上,为定值证法二:设直线PQ方程为,,,联立得整理得,由过右焦点F的直线l与双曲线C的右支交于P,Q两点,则解得,,,,由双曲线方程可得,,,,∵,∴,,证法三:设直线PQ方程为,,,联立得整理得,由过右焦点F的直线l与双曲线C的右支交于P,Q两点,则解得,∴,,由双曲线方程可得,,则,所以,,,∴为定值19、(1);(2)最大值为,最小值为【解析】(1)求出导函数,由即可解得;(2)求出函数的单调区间,进而可以求出函数的最值.【详解】解:(1)由题意,可得,得.(2),令,得或(舍去)当变化时,与变化如下递增递减所以函数在上的最大值为,最小值为.20、(1)(2)或【解析】(1)根据题意可得,又因为且,解得,可得双曲线方程,进而可得的渐近线方程(2)设直线的方程为:,,,联立直线与双曲线方程,可得关于的一元二次方程,由韦达定理可得,,再由两点之间距离公式得,解得,进而由可求出,即可求得离心率.【小问1详解】∵点是双曲线的一个焦点,∴,又∵且,解得,∴双曲线方程为,∴的渐近线方程为:;小问2详解】设直线的方程为,且,,联立,可得,则,∴,即,∴,解得或,即由可得或,故双曲线的离心率或.21、(1);(2)证明见解析【解析】(1)由可求出,结合离心率可知,进而可求出,即可求出标准方程.(2)由题意知,,则由直线的点斜式方程可得直线的解析式为,与椭圆进行联立,设,,结合韦达定理可得,从而由斜率的计算公式对进行整理化简从而可证明.【详解】(1)解:因为,所以.又因为离心率,所以,则,所以椭圆的标准方程是(2)证明:由题意知,,,则直线的解析式为,代入椭圆方程,得设,,则.又因为,,所以【点睛】关键点睛:本题第二问的关键是联立直线和椭圆的方程后,结合韦达定理,用表示交点横坐标的和与积,从而代入进行整理化简.22、(1)(2)反比例函数模型拟合效果更好,产量为10千件时每件产品的非原料成本约为11元,(3)见解析【解析】(1)令,则可转化为,求出样本中心,回归方程的斜率,转化求回归方程即可,(2)求出与的相关系数,通过比较,可得用反比例

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论