版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025-2026学年陕西省西安交大附中高二上数学期末调研模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.设正数数列的前项和为,数列的前项积为,且,则()A. B.C. D.2.已知双曲线,则双曲线的渐近线方程为()A. B.C. D.3.已知平面直角坐标系内一动点P,满足圆上存在一点Q使得,则所有满足条件的点P构成图形的面积为()A. B.C. D.4.已知,则点到平面的距离为()A. B.C. D.5.已知为等比数列的前n项和,,,则()A.30 B.C. D.30或6.“”是“方程表示椭圆”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件7.已知圆的半径为,平面上一定点到圆心的距离,是圆上任意一点.线段的垂直平分线和直线相交于点,设点在圆上运动时,点的轨迹为,当时,轨迹对应曲线的离心率取值范围为()A. B.C. D.8.已知椭圆=1的离心率为,则k的值为()A.4 B.C.4或 D.4或9.下列推理中属于归纳推理且结论正确的是()A.由,求出,,,…,推断:数列的前项和B.由满足对都成立,推断:为奇函数C.由半径为的圆的面积,推断单位圆的面积D.由,,,…,推断:对一切,10.已知公差不为0的等差数列中,(m,),则mn的最大值为()A.6 B.12C.36 D.4811.圆与直线的位置关系为()A.相切 B.相离C.相交 D.无法确定12.某人忘了电脑屏保密码的后两位,但记得最后一位是1,3,5,7,9中的一个数字,倒数第二位是G,O,D中的一个字母,若他尝试输入密码,则一次输入就解开屏保的概率是()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.设函数,,对任意的,都有成立,则实数的取值范围是______14.在数列中,,且,则_______.15.三棱锥中,、、两两垂直,且.给出下列四个命题:①;②;③和的夹角为;④三棱锥的体积为.其中所有正确命题的序号为______________.16.已知点,圆:.若过点的圆的切线只有一条,求这条切线方程____________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知圆:与直线:.(1)证明:直线过定点,并求出其坐标;(2)当时,直线l与圆C交于A,B两点,求弦的长度.18.(12分)如图,在三棱柱中,侧棱垂直于底面,分别是的中点(1)求证:平面平面;(2)求证:平面;(3)求三棱锥体积19.(12分)已知是公差不为零等差数列,,且、、成等比数列(1)求数列的通项公式:(2)设.数列{}的前项和为,求证:20.(12分)如图,分别是椭圆C:的左,右焦点,点P在椭圆C上,轴,点A是椭圆与x轴正半轴的交点,点B是椭圆与y轴正半轴的交点,且,.(1)求椭圆C的方程;(2)已知M,N是椭圆C上的两点,若点,,试探究点M,,N是否一定共线?说明理由.21.(12分)已知圆C:的半径为1(1)求实数a的值;(2)判断直线l:与圆C是否相交?若不相交,请说明理由;若相交,请求出弦长22.(10分)如图,已知等腰梯形,,为等腰直角三角形,,把沿折起(1)当时,求证:;(2)当平面平面时,求平面与平面所成二面角的平面角的正弦值
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】当可求得;当时,可证得数列为等差数列,利用等差数列通项公式可推导得到,由求得后,利用可求得结果.【详解】当时,,解得:;当时,由得:,即,,数列是以为首项,为公差的等差数列,,解得:,,经检验:满足,,故选:B.2、A【解析】求出、的值,可得出双曲线的渐近线方程.【详解】在双曲线中,,,因此,该双曲线的渐近线方程为.故选:A.3、D【解析】先找临界情况当PQ与圆C相切时,,进而可得满足条件的点P形成的图形为大圆(包括内部),即求.【详解】当PQ与圆C相切时,,这种情况为临界情况,当P往外时无法找到点Q使,当P往里时,可以找到Q使,故满足条件的点P形成的图形为大圆(包括内部),如图,由圆,可知圆心,半径为1,则大圆的半径为,∴所有满足条件的点P构成图形的面积为.故选:D.【点睛】关键点点睛:本题的关键是找出临界情况时点所满足的条件,进而即可得到动点满足条件的图形,问题即可解决.4、A【解析】根据给定条件求出平面的法向量,再利用空间向量求出点到平面的距离.【详解】依题意,,设平面的法向量,则,令,得,则点到平面的距离为,所以点到平面的距离为.故选:A5、A【解析】利用等比数列基本量代换代入,列方程组,即可求解.【详解】由得,则等比数列的公比,则得,令,则即,解得或(舍去),,则故选:A6、B【解析】方程表示椭圆,可得,解出的范围即可判断出结论.【详解】∵方程表示椭圆,∴解得或,故“”是“方程表示椭圆”的必要不充分条件.故选:B7、D【解析】分点A在圆内,圆外两种情况,根据中垂线的性质,结合椭圆、双曲线的定义可判断轨迹,再由离心率计算即可求解.【详解】当A在圆内时,如图,,所以的轨迹是以O,A为焦点的椭圆,其中,,此时,,.当A在圆外时,如图,因为,所以轨迹是以O,A为焦点的双曲线,其中,,此时,,.综上可知,.故选:D8、C【解析】根据焦点所在坐标轴进行分类讨论,由此求得的值.【详解】当焦点在轴上时,,且.当焦点在轴上时,且.故选:C9、A【解析】根据归纳推理是由特殊到一般,推导结论可得结果.【详解】对于A,由,求出,,,…,推断:数列的前项和,是由特殊推导出一般性的结论,且,故A正确;B和C属于演绎推理,故不正确;对于D,属于归纳推理,但时,结论不正确,故D不正确.故选:A.10、C【解析】由等差数列的性质可得,再应用基本不等式求mn的最大值,注意等号成立条件.【详解】由题设及等差数列的性质知:,又m,,所以,即,当且仅当时等号成立.所以mn的最大值为.故选:C11、C【解析】先计算出直线恒过定点,而点在圆内,所以圆与直线相交.【详解】直线可化为,所以恒过定点.把代入,有:,所以在圆内,所以圆与直线的位置关系为相交.故选:C12、C【解析】应用分步计数法求后两位的可能组合数,即可求一次输入就解开屏保的概率.【详解】由题设,后两位可能情况有,∴一次输入就解开屏保的概率是.故选:C.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】首先求得函数在区间上的最大值,然后分离参数,利用导函数求最值即可确定实数的取值范围.【详解】∵在上恒成立,∴当时,取最大值1,∵对任意的,都有成立,∴在上恒成立,即在上恒成立,令,则,,∵在上恒成立,∴在上为减函数,∵当时,,故当时,取最大值1,故,故答案为【点睛】本题考查的知识点是函数恒成立问题,利用导数研究函数的单调性,利用导数研究函数的最值,难度中档14、##【解析】根据数列的递推公式,发现规律,即数列为周期数列,然后求出即可【详解】根据题意可得:,,,故数列为周期数列可得:故答案为:15、①②③【解析】设,以点为坐标原点,、、所在直线分别为、、轴建立空间直角坐标系,利用空间向量数量积的坐标运算可判断①②③④的正误.【详解】设,由于、、两两垂直,以点为坐标原点,、、所在直线分别为、、轴建立空间直角坐标系,如下图所示:则、、、.对于①,,所以,,①正确;对于②,,,则,②正确;对于③,,,,,所以,和的夹角为,③正确;对于④,,,,则,所以,,而三棱锥的体积为,④错误.故答案为:①②③.【点睛】关键点点睛:在立体几何中计算空间向量的相关问题,可以选择合适的点与直线建立空间直角坐标系,利用空间向量的坐标运算即可.16、或【解析】由题设知A在圆上,代入圆的方程求出参数a,结合切线的性质及点斜式求切线方程.【详解】因为过的圆的切线只有一条,则在圆上,所以,则,且切线斜率,即,所以切线方程或,整理得或.故答案为:或.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析,(2)【解析】(1)将直线方程化为,解方程得出定点;(2)求出圆心到直线的距离,再由几何法得出弦长.【小问1详解】证明:因为直线,所以.令,解得,所以不论取何值,直线必过定点【小问2详解】当时,直线为,圆心圆心到直线的距离,则18、(1)证明见解析;(2)证明见解析;(3)【解析】(1)由直线与平面垂直证明直线与平行的垂直;(2)证明直线与平面平行;(3)求三棱锥的体积就用体积公式.(1)在三棱柱中,底面ABC,所以AB,又因为AB⊥BC,所以AB⊥平面,因为AB平面,所以平面平面.(2)取AB中点G,连结EG,FG,因为E,F分别是、的中点,所以FG∥AC,且FG=AC,因为AC∥,且AC=,所以FG∥,且FG=,所以四边形为平行四边形,所以EG,又因为EG平面ABE,平面ABE,所以平面.(3)因为=AC=2,BC=1,AB⊥BC,所以AB=,所以三棱锥的体积为:==.考点:本小题主要考查直线与直线、直线与平面、平面与平面的垂直与平行的证明;考查几何体的体积的求解等基础知识,考查同学们的空间想象能力、推理论证能力、运算求解能力、逻辑推理能力,考查数形结合思想、化归与转化思想19、(1);(2)证明见解析.【解析】(1)设等差数列的公差为,则,根据题意可得出关于的方程,求出的值,利用等差数列的通项公式可求得数列的通项公式;(2)求得,利用裂项相消法求出,即可证得结论成立.【小问1详解】解:设等差数列的公差为,则,由题意可得,即,整理可得,,解得,因此,.【小问2详解】证明:,因此,,故原不等式得证.20、(1)(2)不一定共线,理由见解析【解析】(1)由椭圆定义可得a,利用∽△BOA可解;(2)考察轴时的情况,分析可知M,,N不一定共线.【小问1详解】由题意得,,设,,代入椭圆C的方程得,,可得.可得.由,,所以∽△BOA,所以,即,可得.又,,得.所以椭圆C的方程为.【小问2详解】当轴时,,设,,则由已知条件和方程,可得,整理得,,解得或.由于,所以当时,点M,,N共线;所以当时,点M,,N不共线.所以点M,,N不一定共线.21、(1);(2)直线l与圆C相交,.【解析】(1)利用配方法进行求解即可;(2)根据点到直线距离公式,结合圆的弦长公式进行求解即可.【小问1详解】将化为标准方程得:因为圆C的半径为1,所以,得【小问2详解】由(1)知圆C的圆心为,半径为1设圆心C到直线l的距离为d,则,所以直线l与圆C相交,设其交点为A,B,则,即22、(1)证明见解析(2)【解析】(1)取的中点E,连,证明四边形为平行四边形,从而可得为等边三角形,四边形为菱形,从而可证,,即可得平面,再根据线面垂直的性质即可得证;(2)取的中点M,连接,以
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 光大银行金融市场部总经理面试题库含答案
- 京东物流调度员面试技巧与答案
- 电商公司客服文员面试技巧与答案
- 电商物流经理面试常见问题及答案
- 程序员项目架构师面试题含答案
- 2025年智能城市建设项目可行性研究报告
- 2025年城市水资源综合利用项目可行性研究报告
- 2025年自动化仓储系统开发与运营项目可行性研究报告
- 2025年乡村振兴战略产业园区发展项目可行性研究报告
- 2025年园区智慧能源管理项目可行性研究报告
- 纪委谈话笔录模板经典
- 消防安全制度和操作规程
- 叉车安全技术交底
- 单人徒手心肺复苏操作评分表(医院考核标准版)
- 国家预算实验报告
- 工业园区综合能源智能管理平台建设方案合集
- 附件1:中国联通动环监控系统B接口技术规范(V3.0)
- 正弦函数、余弦函数的图象 说课课件
- 闭合性颅脑损伤病人护理查房
- 《你看起来好像很好吃》绘本课件
- 囊袋皱缩综合征课件
评论
0/150
提交评论