版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
专题十一概率与统计
11.1随机事件及概率
考点I随机事件的概率
1.(2023北京,18,13分,中)为研究某种农产品价格变化的规律,收集得到了该农产品连
续40天的价格变化数据,如下表所示.在描述价格变化时,用“+”表示“上涨”,即当天价格
比前一天价格高;用“”表示“下跌”,即当天价格比前一天价格低;用“0”表示“不变”,即当
天价格与前一天价格相同.
时段价格变化
第1天
到第-++0---++0+0--+-+00+
20天
第21天到笫40天0++0---++0+0+---+0-+
用频率估计概率.
(1)试估计该农产品价格“上涨”的概率;
(2)假设该农产品每天的价格变化是相互独立的.在未来的日子里任取4天,试估计该农
产品价格在这4天中2天“上涨”、1天“下跌”、I天“不变”的概率;
(3)假设该农产品每天的价格变化只受前一天价格变化的影响.判断第41天该农产品价
格“上涨"“下跌''和“不变”的概率估计值哪个最大.(结论不要求证明)
解析(1)由题表得这40天内该农产品价格“上涨”的天数为16,估计该农产品价格“上涨”
的概率为A=7-
405
(2)由(1)估计该农产品价格“上涨”的概率为|,
由题表估计该农产品价格“下跌”的概率为葛=高价格“不变”的概率为啜=
4020404
所以所求概率为以XX弓X《X;=名.
⑶第41天该农产品价格“不变”的概率估计值最大.
详解:因为该农产品每天的价格变化只受前一天价格变化的影响,且第40天的价格“上
涨”,所以只需统计前40天中价格“上涨”的次H的价格变化情况.由题表知价格“上涨”的
次日价格“上涨”的天数为4,汾格“下跌”的天数为2,价格“不变”的天数为9,所以第41天
该农产品价格“不变”的概率估计值最大.
2.(2018北京文,17,13分)电影公司随机收集了电影的有关数据,经分类整理得到下表:
电影类
第一类第二类第三类第四类第五类第六类
型
电影部
14050300200800510
数
好评率0.40.20.150.250.20.1
好评率是指:一类电影中获得好评的部数与该类电影的部数的比值.
(1)从电膨公司收集的电账中随机选取1部,求这部电影是获得好评的第四类电影的概率;
(2)随机选取1部电影,估计这部电影没有获得好评的概率;
(3)电影公司为增加投资回报,拟改变投资策略,这将导致不同类型电膨的好评率发生变化.假设表格中只有
两类电影的好评率数据发生变化.那么哪类电影的好评率增加0.1,哪类电影的好评率减少0.1,使得获得好
评的电影总部数与样本中的电影总部数的比值达到最大?(只需写出结论)
解析(1)由题意知.样本中电影的总部数是140+50+300+200+800+510=2000,
第四类电影中获得好评的电影部数是200x0.25=50.
故所求概率为端3=0.025.
⑵由题意知,样本中获得好评的电影部数是
140x0.4+50x0.2+300x0.15+200x).25+800x0.2+510x0.1
=56+10+45+50+160+51
=372.
故所求概率估计为1-^372=0.814.
4UUU
(3)增加第五类电景乡的好评率,减少第二类电影的好评率.
3.(2015四川文,17,12分)T小客车上有5个座位,其座位号为1,2,3,4,5.乘客R,%Ps,P„P:的座位号分
别为1,2,3,4,5,他们按照座位号从小到大的顺序先后上车.乘客E因身体原因没有坐自己的I号座位,这时
司机要求余下的乘客按以下规则就座:如果自己的座位空着,就只能坐自己的座位;如果自己的座位已有乘
客就座,就在这5个座位的剩余空位中任意选择座位.
⑴若乘客R坐到了3号座位,其他乘客按规则就座,则此时共有4种坐法.下表给出了其中两种坐法,清填入
余下两种坐法(将乘客就座的座位号填入表中空格处);
⑵若乘客P:坐到了2号座位,其他乘客按规则就座,求乘客P坐到5号座位的概率.
乘客PlP2PsP,P5
32145
32451
座校号
乘客P(P2PsP,P5
21345
23145
23415
23451
座位号
23541
24315
24351
25341
于是,所有可能的坐法共8种.
设"乘客P坐到5号座位”为事件A,则事件A中的基本事件的个数为1.
41
所以P(A)=Jg.
oZ
考点2古典概型
1.(2021全国甲文,10,5分)将3个1和2个0随机排成一行,则2个0不相邻的概率为)
A.0.3B.0.5C.0.6D.0.8
答案C列举法:基本事件为
(1,1,1,0,0),(L1,0,1,0),(I,1,0,0,1),(1,0,I,1,0),(1,0,1,0,1),(1,0,0,1,I),(0,I,1,1,0),(0,h1,0
,I),(0,1,0,1,I),(0,0,I,I,I),共10种情况,其中2个0不相邻的情况有6机故P=/=0.6,故选C.
2.(2022仝国甲文,6,5分)从分别写有1.2,3,<5.6的6张卡片中无放回险机抽取2张,则抽到的2张卡片
上的数字之积是4的倍数的概率为()
A.1C.|D.1
答案c依题意知,总的基本事件有
(1,2),(】,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),6,6),共
15个.其中符合数字之积是4的倍数的基本事件有6个,故所求概率=康故选C.
3.(2021全国甲理,10,5分)将4个I和2个0随机排成一行,则2个0不相邻的概率为()
A.|C.1D.g
答案c解题指导:先求4个I和2个0的所有排列数,再利用插空法求2个。不相邻的种数.
解析从6个位置中任选2个位置排2个0,其他4个位置排4个I,共有髭以=15种排法;先排4个I,再将
2个0插空,共有*10种插法,故所求概率P=^=
•题多解(捆绑法):山题意知2个0相邻共有0禺种排列方法,故所求概率片1黑=1-^=1
易错提醒本题是相同元素的排列问题,实际上元素之间无区别,是组合问题.
4.(2022新高考I,5,5分)从2至8的7个整数中随机取2个不同的数,则这2个数互质的概率为()
B*C.1旺
答案D解法一:从7个整数中随机取2个不同的数共有珞=21种取法.
如图,所取的2个数互质的取法有3+4+2+3+1+1=14种,所以这2个数互质的概率为首=
解法二(间接法):从7个数中任取2个数共有行・21种取法,2个数不互质的情况有两种:①从4个偶数中任
取2个,有以=6种取法;②从偶数和奇数中各取一个,有1种取法,所以2个数不互质的取法有7种,所以取2
个数互质的概率为《=I,故选D.
5.(2018课标n文,5,5分)从2名男同学和3名女同学中任选2人参加社区服务,则选中的2人都是女同学
的概率为()
A.0.6B.0.5C.0.4D.0.3
答案D设两名男生为A,B,三名女生为a,b,c,则从5人中任选2人有
(A,a),(A,b),(A,c),(a,b),(a,c),(b,c),共10种.2人都是女同学的有
(a,b),(a,c),(b,c),共3种.所以所求概率为本0.3.
方法总结古典概型概率的求法:
⑴应用公式P(A)-巴n求概率的关键是寻求基本事件的总数和待求事件包含的基本事件的个数.⑵基本事件
个数的确定方法:
①列举法:此法适用于基本事件较少的古典概型:
②列表法:此法适用于从多个元素中选定两个元素的试验,也可看成是坐标法;
③画树状图法:画树状图法是进行列举的一种常用方法,适用于有顺序的问题或较复杂问题中基本事件数的
探求.
6.(2017课标n文,H,5分)从分别写有1,2,3,4,5的5张卡片中随机抽取1张,放回后再随机抽取1张,则
抽得的第一张卡片上的数大于第二张卡片上的数的概率为()
4Bi端d
答案D本题考查古典概型.
画出树状图如图:
第就12345
y★/N
第二张1234S1234s1234S1234S1234s
可知所有的基本事件共有25个,满足题意的基本事件有10个,故所求概率P=1^0q2.故选D.
思路分析由树状图列出所有的基本事件,可知共有25个,满足题目要求的基本事件共有10个.由古典概型
102
概率公式可知所求概率P---.
易错警示本题易因忽略有放回的油取而致措.
疑难突破当利用古典概型求概率时,应区分有放回抽取与无放回抽取.有放回抽取一般采用画树状图法列
出所有的基本事件,而无放回抽取一般采用穷举法.
7.(2016课标I文,3,5分)为美化环境,从红、黄、白、紫4种颜色的花中任选2种花种在一个花坛中,余下
的2种花种在另一个花坛中,则红色和紫色的花不在同一花坛的概率是()
答案c从红、黄、白、紫1种颜色的花中任选2种有以下选法:(红黄)、(红白)、(红紫)、(黄白)、(黄
紫)、(白紫),共6种,其中红色和紫色的花不在同一花坛(亦即黄色和白色的花不在同一花坛)的选法有4种,
所以所求事件的概率七万宗故选c.
解后反思从1种颜色的花中任选2种共有6种情况,不重不漏地列举出所有情况是解题关键.
评析本题主要考查了古典概型、不重不漏地将所有情况列举出来是解题关键.
8.(2016课标ID文,5.5分)小敏打开计算机时,忘记了开机密码的前两位,只记得第一位是M.I.N中的一个字
母,第二位是1,2,3,4,5中的一个数字,则小敏输入一次密码能够成功开机的概率是()
B*C.^端
答案C小敏输入密码后两位的所有可能情况如下:
(M,1),(M,2),(M,3),(M,4),(M.5),
(1,1),(1,2),(1,3),(1,4),(1,5),
(N,1),(N,2),(N,3),(N,4),(N,5),共15种.
而能开机的密码只有一种.所以小敏输入一次密码能够成功开机的概率为士
.5
9.(2016北京文,6,5分)从甲、乙等5名学生中随机选出2人,则甲被选中的概率为()
1c2-89
A5B-5C天!r>.-
答案B设这5名学生为甲、乙、丙、丁、戈从中任选2人的所有情况有(甲,乙),(甲,丙).(甲,丁),(甲,
戊),(乙,丙),(乙,T),(乙,戊),(丙,丁),(丙,戊),(丁,戊),
共4+3+2+1=10种.
其中甲被选中的情况有(甲,乙),(甲,丙),(甲,丁),(甲,戊),共4种,
故甲被选中的概率为已?故选B.
易错警示在列举基本事件时要不重不漏,可画树状图:
r乙
XIXA
乙丙丁及丙丁友T茂
评析本题考查古典概型,属中档题.
10.(2015课标I文,4,5分)如果3个正整数可作为一个直角三角形三条边的边长,则称这3个数为一组勾股
数.从1,2,3,4,5中任取3个不同的数,则这3个数构成一组勾股数的概率为()
答案C从1,2,3,4,5中任取3个不同的数有10种取
法:(1,2,3),(1,2,4),(1,2,5),(1,3,4),(1,3,5),(1,4,5),(2,3,4),(2,3,5),(2,4,5),(3,4,5),其中能构
成一组勾股数的有1种:(3,4,5),故所求事件的概率P=击,故选C.
H.(2015广东文,7,5分)已知5件产品中有2件次品,其余为合格品.现从这5件产品中任取2件,怡有一件
次品的概率为()
A.0.4B.0.6C.0.8D.1
答案B记3件合格品分别为笳,必A,,2件次品分别为丸氏,从5件产品中任取2件,有
(A„A?)f(A),A.),(A„B,).(A„B2),(A;.A>),B.),(A2,B,),(A.„B)),(A.„B.),B,B.),共10种可能.其中恰有一
件次品有6种可能,由古典概型概率公式得所求事件概率为4-0.6.选B.
12.(2014课标I理,5,5分M位同学各自在周六、周日两天中任选一天参加公益活动,则周六、周日都有同
学参加公益活动的概率为()
A.iC.1D.Z
8888
答案D由题意知4位同学各自在周六、周日两天中任选一天参加公益活动有2,种情况,而4位同学都选
周六有1种情况,4位同学都选周E有1种情况.故周六、周日都有同学参加公益活动的概率为
13.(2014陕西文6,5分)从正方形四个顶点及其中心这5个点中,任取2个点则这2个点的距离小于该正
方形边长的概率为()
A.1C.|修
DD
答案B设正方形的四个顶点分别是A、B、C、D,中心为0,从这5个点中,任取两个点的事件分别为AB、
AC、AD、AO、BC、BD、BO、CD、CO、DO,共有10种,其中只有顶点到中心0的距离小于正方形的边长,分别
42
是AO、BO、CO、DO,共有1种.故满足条件的概率7rm故选B.
JLUO
评析本迤考直古典概型知识,考查分析问题及阅读理解的能力.理解只有顶点到中心的距离小于边长是解
题的关键.
14.(2013课标I文,3,5分)从1,2,3,4中任取2个不同的数,则取出的2个数之差的绝对值为2的概率是
()
1„1八1r1
A2B3C-4D6
答案B从1,2,3,4中任取2个不同的数,^<(1.2),(1,3),(1,4),(2,3),(2,4),(3,4)6种不同的结果,
取出的2个数之差的绝对值为2的有(1,3),(2,4)2种结果,概率为:,故选B.
15.(2012安徽文,10,5分)袋中共有6个除了颜色外完全相同的球,其中有1个红球、2个白球和3个黑球.
从袋中任取两球,两球颜色为一白一黑的概率等于()
.1C2八3n4
A.-B.-C.-D.-
答案B将同色小球编号.从袋中任取两球,所有基本事件为(红,白J,(红,白:),(红,黑J,(红,黑:),(红,
黑。,(白卜白(白,,黑J,(白“黑J,(白I,黑。(白”黑J,(白2,黑J,(白Z,黑。,(黑I,黑J(黑“
黑,),(黑,黑,),共有15个基本事件,而一白一黑的共有6个,故所求概率故选B.
评析本题主要考查古典概型概率的求解,同时考查了列举法.
16.(2011课标文,6,5分)有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组
的可能性相同,则这两位同学参加同一个兴趣小组的概率为()
答案A甲、乙两人都有3种选择,共有3x3-9种情况,甲、乙两人参加同一兴趣小组共有3种情况甲、
31
乙两人参加同一兴趣小组的概率故选'A•
评析本题主要考查古典概型的概率运算,属容易题.
17.(2011浙江文,8,5分)从装有3个红球、2个白球的袋中任取3个球,则所取的3个球中至少有1个白球
的概率是()
1n3八3八9
Al0Bl0C5Di0
答案D瞬A(直接法):所取3个球中至少有1个白球的取法可分为互斥的两类:两红一白有6种取法,
9
一红两白有3种取法,而从5个球中任取3个球的取法共有10种,所以所求概率为行,故选D.
解法二(间接法):至少有一个白球的对立事件为所取3个球中没有白球,即只有3个红球,共1种取法,故所
1Q
求踞为1磊哈,故选必
18.(2022全国甲理,15,5分)从正方体的8个顶点中任选4个,则这4个点在同一个平面的概率为.
答案
解析从正方体的8个顶点中任选4个顶点,共有禺=70种选法,其中4个点在同一平面的选法共12种,即
选正方体的6个表面和6个对角面的4个顶点,根据古典概型概率公式知所求概率尸=得=2
19.(2022全国乙,理13,文14,5分,应用性)从甲、乙等5名同学中随机选3名参加社区服务工作,则甲、乙
都入选的概率为.
答案
解析设“甲、乙都入选”为事件A,从甲、乙等5名同学中随机选3名参加社区服务I:作包含的基本事件
市•玛个,事件A包含的基本事件有0个,所以2
41U
20.(2016四川文.13,5分)从2,3,8,9中任取两个不同的数字,分别记为a,b,则log.b为整数的概率
是.
答案!
解析所有的基本事件有
(2,3).(2,8),(2,9),(3,2).(3,8),(3,9),(8,2),(8,3),(8.9).(9,2),(9,3),(9,8),共12个.
记"log"b为整数”为事件A,
则事件A包含的基本事件有⑵8),(3,9),共2个.
1Zo
易错警示对a,b取值时要注意J顺序.
评析本题考查了古典概型.正确列举出基本事件是解题的关键.
21.(2014课标I文,13,5分)将2本不同的数学书和1本语文书在书架上随机排成一行,则2本数学书相邻
的概率为.
答案5
解析设2本不同的数学书为alxa”1本语文书为b,在书架上的排法有aa上,a^a,,a向b,a^ba”baia2,ba.,
42
共6种,其中2本数学书相邻的有a.a,b,a孙b,baa,ba物,共4种,因此2本数学书相邻的概率P=-=-.
o5
22.(2014课标n文,13,5分)甲、乙两名运动员各自等可能地从红、白、蓝3种颜色的运动服中选择1种,
则他们选择相同颜色运动服的概率为.
答案j
解析甲、乙的选择方案有红红、红白、红蓝、白红、白白、白蓝、蓝红、蓝白、蓝蓝9种,其中颜色相同
的有3种,所以所求概率为
23.(2014江苏,4,5分)从1,2,3,6这4个数中一次随机地取2个数,则所取2个数的乘积为6的概率
是
答案I
解析从1,2,3,6这4个数中一次随机地取2个数,有(1,2),(1,3),(1,6),(2,3),(2,6),(3,6),共6种情况.
满足条件的有⑵3),(1,6),共2种情况.
故P割.
24.(2014浙江文,14,4分)在3张奖券中有一、二等奖各1张,另1张无奖.甲、乙两人各抽取I张,两人都
中奖的概率是
答案!
解析设A为一等奖奖券,B为二等奖奖券,C为无奖奖券,则甲、乙两人抽取的所有可能结果为A氏BA、K、
CA、BC、CB,共6种.而甲、乙两人都中奖的情况有AB、BA,共2种.故所求概率为2省1.
25.(2013课标n文,13,5分)从1,2,3,4,5中任意取出两个不同的数,其和为5的概率是.
答案0.2
解析仟取两个不同的数的情况有(L3).(1.4).(L5),⑵3).(2.4).(2.5),(3,4).(3.5)J4.5),
共10种,其中和为5的有2种,所以所求概率为总=0.2.
26.(2018天津文.15,13分)已知某校甲、乙、丙三个年级的学生志愿者人数分别为240,160,160,现采用分
层抽样的方法从中抽取7名同学去某敬老院参加献爱心活动.
(1)应从甲、乙、丙三个年级的学生志愿者中分别抽取多少人?
⑵设抽出的7名同学分别用A,B,C,D,E,F,G表示,现从中随机抽取2名同学承担敬老院的卫生工作.
①试用所给字母列举出所有可能的油取结果;
②设M为事件”抽取的2名同学来自同一年级",求事件Y发生的概率.
解析本小题主要考直随机抽样、用列举法计算随机事件所含的基本事件数、古典概型及其概率计算公式
等基本知识.考查运用概率知识解决简单实际问题的能力.
⑴由已知,甲、乙、丙三个年级的学生志愿者人数之比为3:2:2,由于采用分层抽样的方法从中抽取7名
同学,因此应从甲、乙、丙三个年级的学生志愿者中分别抽取3人,2人,2人.
(2)①从抽出的7名同学中随机抽取2名同学的所有可能结果为
[A,B),{A,C},{A,D},{A,E),(A,F},(A,G),{B,C},{B,D},{B,E),{B,F},{B,G},{C,D},{C,E},9F),{C,G},{D
,E},(D,F),{D,G},{E,F},{E,G},{F,G},共21种.
②由⑴,不妨设抽出的7名同学中,来自甲年级的是A,B,C,来自乙年级的是I),E.来自丙年级的是F,G,则从
抽出的7名同学中随机抽取的2名同学来自同一年级的所有可能结果为血B},{A,G,{D,E},{F,G),
共5种.
所以,事件M发生的概率PM
4X
易错瞥示解决古典概型问题时.需注意以下几点:
(1)忽视基本事件的等可能性导致错误:
(2)列举基本事件考虑不全面导致错误:
(3)在求基本事件总数和所求事件包含的基本事件数时,一个按有序,一个按无序处理导致错误.
27.(2017山东文.16,12分)某旅游爰好者计划从3个亚洲国家即,A二,A.和3个欧洲国家冲选择2个
国家去旅游.
(D若从这6个国家中任选2个.求这2个国家都是亚洲国家的概率;
⑵若从亚洲国家和欧洲国家中各任选1个,求这2个国家包括、但不包括B的概率.
解析(D由题意知.从6个国家中仟选两个国家.其一切可能的结果绢成的基本事件
有:存即),{儿,即},俶A,J{A"BJ,出,即,{A“BJ,{也出},{&,上},「,R},A,BJ,{A„Bj,{BbB:
),{B“BJ,{%BJ,共15个.
所选两个国家都是亚洲国家的事件所包含的基本事件有:{A.,A2},的,A.J,A,AJ,共3个,
31
则所求事件的概率
(2)从亚洲国家和欧洲国家中各任选一个,其一切可能的结果组成的基本事件
有:{A“BJ,{由,即,{A“BJ,{MBJ,{MBJ,ABh&Bj,他,4},共9个.
包括A,但不包括的事件所包含的基本事件有:d,BJ,凡,BJ,共2个,
2
则所求事件的概率P-.
方法总结求古典概型概率的一般步骤:
1.求出所有基本事件的个数n,常用的方法有列举法、列表法、画树状图法:
2.求出事件A所包含的基本事件的个数m;
3.代入公式P(A)=求解.
n
28.(2015天津文.15,13分)设甲、乙、丙三个乒乓球协会的运动员人数分别为27,9,18.现采用分层抽样的
方法从这三个协会中抽取6名运动员组队参加比赛.
(1)求应从这三个协会中分别抽取的运动员的人数;
⑵将抽取的6名运动员进行编号,编号分别为NMA”A.,A;,.V现从这6名运动员中随机抽取2人参加双
打匕展.
(i)用所给编号列出所有可能的结果;
(ii)设A为事件"编号为A和1的两名运动员中至少有I人被抽到",求事件A发生的概率.
解析(1)应从甲、乙、丙三个协会中抽取的运动员人数分别为3,1,2.
⑵⑴从6名运动员中随机抽取2人参加双打比赛的所有可能结果为
(A„A.h(A„A,},(A.,A.),6“Aj,Aj,{A:,Aj,Aj,(A:,猫,A,AJ,{A”Aj,Aj,{A.,A,),{
M俶A},共15种.
(ii)编号为A,和般的两名运动员中至少有1人被抽到的所有可能结果为
{Al,As},{Al,A.L{AJ,AS},{Ai,AJ,{3As},{Al,AJ,{A.,As},{A“AJ,{As,&},共9种.
93
因此,事件A发生的概率P(A)
JLDJ
评析本小题主要考直分层抽样、用列举法计算随机事件所含的基本事件数、古典概型及其概率计算公式
等基础知识.考育运用概率、统计知识解决简单实际问题的能力.
29.(2015山东文.16,12分)某中学调直了某班全部15名同学参加书法社团和演讲社团的情况,数据如下
表:(单位:人)
参加书法社团未参加书法社团
参加演讲社团85
未参加演讲社团230
⑴从该班随机选1名同学,求该同学至少参加上述一个社团的概率;
(2)在既参加书法社团又参加演讲社团的8名同学中,有5名男同学A1.A,.A,A„A,,3名女同学B,.4,B,.现从
这5名男同学和3名女同学中各随机选1人求儿被选中且I1未被选中的概率.
解析(1)由调查数据可知,既未参加书法社团又未参加演讲社团的有30人,
故至少参加上述一个社团的共有45-30=15人,
所以从该班随机选1名同学,该同学至少参加上述一个社团的概率为
⑵从这5名男同学和3名女同学中各随机选1人,其一切可能的结果组成的基本事件有:
{At.B.},{AoBjh{A>,Bj,
{4,&},A,BJ,{A“BJ,
{AH,(A“B-J,{—},
共15个.
根据题意.这些基本事件的出现是等可能的.
事件"Ai被选中且R未被选中"所包含的基本事件有:
共2个.
因此人被选中且氏未被选中的概率为P三福.
评析本题考查随机事件的概率及其计算.考直运算求解能力及应用意识.
30.(2014四川文,16,12分)一个盒子里装有三张卡片.分别标记有数字1,2.3.这三张卡片除标记的数字外
完全相同.随机有放回地抽取3次,每次抽取1张,将抽取的卡片上的数字依次记为a,b.c.
⑴求”抽取的卡片上的数字满足a+b=c”的概率;
(2)求"抽取的卡片上的数字a,b,c不完全相同”的概率.
解析(1)由题意知.(a,b,c)所有可能的结果为
(1,1,1),(1,1,2),(1,1,3),(1,2,1),(1,2,2),(1,2,3),(1,3,1),(1,3,2),(1,3,3),(2,1,1),(2,1,2),(2,1
.3).(2.2.1).(2.2.2).(2.2.3).(2.3.1).(2.3.2).(2.3,3).(3.1.1).(3.1,2),(3.1.3),(3.2.1).(3.2.2).
(3,2,3),(3,3,1),(3,3,2),(3,3,3),共27种.
设“抽取的卡片上的数字满足*b=c"为事件'
则事件A包括(1,1,2),(1,2,3),(2,1,3),共3种.
所以P(A)磅3方1
因此,“抽取的卡片上的数字满足a+b=c"的概率为去
(2)设"抽取的卡片上的数字a,b,c不完全相同"为事件B,
则事件下包括(1,1,1),(2,2,2),(3,3,3),共3种.
所以P(B)=1-P(7)=l*q.
O
因此,“抽取的卡片上的数字a,b,c不完全相同”的概率为
评析本题主要考查随机事件的概率、古典概型等概念及相关计算,考查应用意识.
31.(2014天津文.15,13分)某校夏令营有3名男同学A.B,C和3名女同学X,Y,Z,其年级情况如下表:
一年级二年级三年级
男同学ABC
女同学XYZ
现从这6名同学中随机选出2人参加知识竞赛(每人被选到的可能性相同).
(D用表中字母列举出所有可能的结果;
(2)设U为事件“选出的2人来自不同年级且怡有1名男同学和1名女同学",求事件V发生的概率.
解析(1)从6名同学中随机选出2人参加知识竞赛的所有可能结果为
(A,B),凡C},{A,X},(A,Y),{A,Z},{B,C},{B,X),{B,Y},{B,Z),{C,X},{C.Y},{C,Z},{X,Y},(X,Z),{Y,1},共
15种.
(2)选出的2人来臼不同年级且恰有I名男同学和1名女同学的所有可能结果为
(A,Y),{A,Z},{B,X},{B,Z),{C,X},{C,Y},共6种.
因此,事件M发生的概率为
评析本题主要考直用列举法计算随机事件所含的基本事件数、古典概型及其概率计算公式等基础知识.
考查运用概率知识解决简单实际问幽的能力.
32.(2016山东文.16,12分)某儿童乐园在"六一"儿童节推出了一项趣味活动.参加活动的儿童需转动如图
所示的转盘两次,每次转动后.待转盘停止转动时.记录指针所指区域中的数.设两次记录的数分别为X.y.奖
励规则如下:
①若xyW3,则奖励玩具一个;
②若xy28,则奖励水杯一个;
③其余情况奖励饮料一瓶.
假设转盘质地均匀,四个区域划分均匀.小亮准备参加此项活动.
⑴求小亮获得玩具的概率;
⑵请匕徽小亮获得水杯与获得饮料的概率的大小,并说明理由.
解析用数对(X,y)表示儿童参加活动先后记录的数则基本事件空间Q与点集S-{(x,y)|xGN,yGN,
Kx<4,Ky<41---对应.
因为S中元素的个数是1x4=16,
所以基本事件总数n=16.
⑴记"xyW3"为事件A,
则事件A包含的基本事件数共5个.
即(1,1),(1,2),(1,3),(2,1),(3,1).
所以P(A)~即小亮获得玩具的概率为今
1616
⑵记“xy28”为事件B,w3<xy<8"为事件C,
则事件B包含的基本事件数共6个,
即(2,4),(3,3),(3,4),(4,2),(4,3),(4,4).
所以P(B)*。
loO
事件C包含的基本事件数共5个,
即(1,4),(2,2),(2,3),(3,2),(4,1).
5as
所以P(C)W.因为于二
ioo10
所以小亮获得水杯的概率大于获得次料的概率.
易错警示本题出错的原因有两个:(1)理解不清题意,不能将基本事件列举出来:⑵列举基本事件有遗漏.
评析本题主要考置了古典概型,理解题意,不重不漏地列举出基本事件是解题关键.
考点3.事件相互独立性
1.(多选)(2023新课标II,12,5分,难)在信道内传输0,1信号,信号的传输相互独立,发送
。时,收到1的概率为a(Ovavl),收到。的概率为1-a;发送1时,收到。的概率沏
收到1的概率为1日考虑两种传输方案:单次传输和三次传输.单次传输是指每个信号只
发送1次;三次传输是指每个信号重复发送3次.收到的信号需要译码,译码规则如下:单
次传输时,收到的信号即为译码;三次传输时,收到的信号中出现次数多的即为译码(例
如,若依次收到1,0,1,则译码为1)()
A.采用单次传输方案,若依次发送1,0,1,则依次收到1,0.1口勺概率为(1-a)(1/产
B.采用三次传输方案,若发送1,则依次收到1,0,1的概率为夕(I/)?
C.采用三次传输方案,若发送1,则译码为1的概率为4(1/尸+(1/尸
D.当(X«<0.5时,若发送01则采用三次传输方案译码为0的蹴率大于采用单次传输方案
译码为0的概率
答案ABD当发送0时,收到0.1分别记为事件A,&
当发送1时,收到0,1分别记为事件C,D,则P(4)=l-«,P(B)=a,P(C)=AP(D)=1-/?,且
A,B,C,D相互独立.
对于A,即求事件DAD发生的概率,P(D4O)=P(A)・(P(D))2=(l-a)(1/)2,故A正确;
对于B,即求事件DCD发生的概率,P(DCD)=P(C)-(P(D))^(1-/y)2,故B正确;
对于C,采用三次传输方案,发送1,且译码为1的情况有两种:3次发送均收到1,3次发
送恰有2次收到1,故所求概率为(1/尸+3或(1/尸,故c不正确;
对于D,采用三次传输方案,发送0,且译码为0的概率为(l-a)3+3(l-a)2a=(1+2加(1・冷2,
采用单次传输方案,发送0,11译码为0的概率为1-a,
(1+2a)(1«)~(1a)—(1a)[(1+2a)(1a)11—(1a)(2a2+«)—(1a)(12a)a,
l-«>0,l-2«>0,(1-a)(l-2«)«>0,/.(l+2a)(l-a)2>l-a,故D正确.
故选ABD.
2.(2021新高考/,8,5分)有6个相同的球,分别标有数字1,2,3,4,5,6,从中有放回地随机取两次,每次取1
个球.甲表示事件“笫一次取出的球的数字是1",乙表示事件“第二次取出的球的数字是2”,内表示事件
“两次取出的球的数字之和是8”.丁表示事件“两次取出的球的数字之和是7”.则()
A.中与丙相互独立B.甲与丁相互独立
C.乙与丙相互独立D.丙与丁相互独立
答案B依题意,有放回地随机取两次,共有36种不同结
果:(1,1),(1,2),(1,3),(1,4),(1,5),(1,6),(2,I),(2,2),(2,3).(2,4),-2,5),(2,6),(3,1),(3,2),(3,3)
,(3,4),(3,5),(3,6),(4,I),(4,2),(4,3),(4,4),(4,5),(4,6),(5,1),(5,2),(5,3),(5,4),(5,5),(5,6),(
6,I),(6,2),(6,3),(6,4),(6,5),(5,6).
其中P(甲)4=(乙=”(丙)=20(丁?
丁事件包含(1,6),(6,1),(2,5),52),(3,4),(4,3),共6个基本事件.
丙事件包含(2,6),(6,2),(3,5),(5,3),(4,4),共5个基本事件.
易知’‘甲、丙同时发生”的基本事件为0个,“丙、丁同时发生”的基本事件为。个,“乙、丙同时发生”
的基本事件为(6,2),共1个,
(乙丙)又P(乙)甲(丙)=^x3羊白,乙、丙不相互独立.
3663636
同理可知“甲、丁同时发生”的基本事件为(1,6),.”(甲丁又P(甲)/(丁(甲
3Doo3b
丁)=尸(甲)pen,
甲与丁相互独立,故选B.
3.(2022全国乙理,10.5分,应用性)某棋手与甲、乙、丙三位棋手各比赛一盘,各盘比赛结果相互独匕已知
该棋手与甲、乙、丙比赛获胜的概率分别为“,p3P第且〃3>点>”>0.记该棋手连胜两盘的概率为p,则
A.p与该棋手和甲、乙、丙的比赛次序无关
B.该棋手在第一盘与甲比赛,p最大
C该棋手在第一盘与乙比赛,p最大
D.该机手在第一盘与丙比赛,"最大
答案D棋手与甲、乙、丙比赛顺序有以下A:=6种情况:
①比赛顺序为甲、乙、丙时,p=pipKI-〃3)+(I-pi)pipa=p3+p2pr2Pl呻3;
②比赛顺序为甲、丙、乙时,p=p\p)(l-/?2)+(I-pi)P3〃2=pi〃3+p犯-2pi/6;
③比赛顺序为乙、甲、丙时,p=〃2〃-㈤pip产”1〃2+〃1〃3-2〃|/印3;
④比赛顺序为乙、丙、甲时,〃孙+pi〃3-2pip孙;
⑤比赛顺序为丙、甲、乙时,p=pap孙;
⑥比赛顺序为丙、乙、甲时,〃=〃孙(I-〃i)+(13)•〃犯=〃孙+pip>2pip孙
易得情况①与⑥,②与④,③与⑤的概率分别相等,又必>P>pi>0,...pip2V•,.②与⑷的概率最
大,即棋手在第二盘与丙比赛,p最大,故选D.
一题多解:设棋手在第二盘与甲比褰连胜两盘的概率为〃",,在第二盘与乙比赛连胜两盘的概率为/〃,在第二
盘与丙比赛连胜两盘的概率为P必由题意得,P•»'=/?1[/>2(I叱)+〃3(1-㈤]=〃6+〃1〃3-2〃|〃犯,P/.
=P1[pi(I-Pi)+/>3(1-pi)]=p\p2+p:p3-2pip2p3.p.S=/?3[pi(1乎2)+〃2(I]=pg+p2/〃-2pip乎3.由/?3>/?2>/>1>0,得〃内
-P^=P:P3-P\P2=P2(p3-pi)>0,pg-p乙=〃1〃3-〃1庐=。1(pj-pDX),山最人.故选D.
4.(2015课标I理,4,5分)投篮测试中,每人投3、次、至少投中2次才能通过测武已知某同学每次投篮投中
的概率为0.6,且各次投篮是否投中相互独立,则该同学通过测试的概率为()
A.0.648B.0.432C.0.36D.0.312
答案A该同学通过测试的概率P-《XO.6x0.4+0.6、0.432-0.216=0.648,故选A.
5.(2020课标/理,19,12分)甲、乙、丙三位同学进行羽毛球比赛,约定赛制如下:
累计负两场者被淘汰:比赛前抽签次定首冼比赛的两人,另一人轮空;每场比赛的胜者与轮空者进行下一场
比赛,负者下一场轮空,直至有一人被淘汰;当一人被淘汰后,剌余的两人继续比赛,直至其中一人被淘汰,另
一人最终获胜,比赛结束.
经抽签,甲、乙首先比赛,丙轮空.设每场比赛双方获胜的概率都为今
(I)求甲连胜四场的概率;
(2)求需要进行第五场比赛的概率;
(3)求丙最终获胜的概率.
解析⑴甲连胜四场的概率为白.
(2)根据赛制,至少需要进行四场比赛,至多需要进行五场比赛.
比赛四场结束,共有三种情况:
中连胜四场的概率为白;
乙连胜四场的概率为白;
丙上场后连胜三场的概率为;.
所以需要进行第五场比赛的概率为H2
⑶丙最终获胜,有两种情况:
比赛四场结束且内最终获胜的概率为:;
比赛五场结束且丙最终获胜,则从第一场开始的四场
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年海外业务拓展专员招聘面试题库及参考答案
- 2025年及未来5年市场数据中国镁铝合金切削液行业投资分析及发展战略研究咨询报告
- 2025年社会工作者中级综合能力真题及答案解析
- 中医学岗前培训专业知识考试试题及答案
- 2025年《中华人民共和国社会保险法》知识竞赛题库及答案
- 2025年汽车维修技术员技能鉴定考试试题及答案解析
- 二次供水系列管理制度卫生管理卫生安全应急预案
- 好友代购协议范本
- 洗车销售面试题及答案
- 农业银行招聘试题及答案
- 智能机器人技术的研究与发展
- 《传染病肝炎》课件
- 《小英雄雨来》读书分享会
- 安全标准化13要素汇总表格
- 建筑工程安全内业管理标准培训
- 营销方案策划书模板集合8篇
- 心肺复苏中国专家共识解读
- 汽车底盘测功机
- 氯碱工艺流程工艺流程图
- 2023年的人事档案个人自传集合3篇
- YS/T 517-2009氟化钠
评论
0/150
提交评论