版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
宿州市重点中学2026届数学高一上期末学业质量监测试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.下列函数中为奇函数,且在定义域上是增函数是()A. B.C. D.2.某几何体的三视图如图所示,则该几何体的体积为()A.8π B.16πC. D.3.点M(1,4)关于直线l:x-y+1=0对称的点的坐标是()A.(4,1) B.(3,2)C.(2,3) D.(-1,6)4.函数在区间上的最大值为A.2 B.1C. D.1或5.已知函数,则的值等于A. B.C. D.6.函数f(x)=2x-5零点在下列哪个区间内().A.(0,1) B.(1,2)C.(2,3) D.(3,4)7.定义在上的奇函数,当时,,则不等式的解集为()A. B.C. D.8.设a,bR,,则()A. B.C. D.9.已知,则下列结论正确的是()A. B.C. D.10.为得到函数的图象,只需将函数的图象()A.向左平移个长度单位 B.向右平移个长度单位C.向左平移个长度单位 D.向右平移个长度单位二、填空题:本大题共6小题,每小题5分,共30分。11.函数f(x),若f(a)=4,则a=_____12.已知,且,写出一个满足条件的的值___________13.将函数的图象先向下平移1个单位长度,在作关于直线对称的图象,得到函数,则__________.14.函数f(x)=log2(x2-5),则f(3)=______15.已知向量,若,则m=____.16.有一批材料可以建成360m长的图墙,如果用此材料在一边靠墙的地方围成一块矩形场地,中间用同样材料隔成三个面积相等的小矩形如图所示,则围成场地的最大面积为______围墙厚度不计三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数,其图像过点,相邻两条对称轴之间的距离为(1)求函数的解析式;(2)将函数的图像上每一点的横坐标伸长到原来的2倍,纵坐标保持不变,得到函数的图像,若方程在上有两个不相等的实数解,求实数m的取值范围18.如图,在平行四边形中,设,.(1)用向量,表示向量,;(2)若,求证:.19.已知函数(1)求证:在上是单调递增函数;(2)若在上的值域是,求a的值20.已知(1)若为第三象限角,求的值(2)求的值(3)求的值21.某公司结合公司的实际情况针对调休安排展开问卷调查,提出了,,三种放假方案,调查结果如下:支持方案支持方案支持方案35岁以下20408035岁以上(含35岁)101040(1)在所有参与调查的人中,用分层抽样的方法抽取个人,已知从“支持方案”的人中抽取了6人,求的值;(2)在“支持方案”的人中,用分层抽样的方法抽取5人看作一个总体,从这5人中任意选取2人,求恰好有1人在35岁以上(含35岁)的概率.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】结合基本初等函数的单调性及奇偶性分别检验各选项即可判断【详解】对于函数,定义域为,且,所以函数为偶函数,不符合题意;对于在定义域上不单调,不符合题意;对于在定义域上不单调,不符合题意;对于,由幂函数的性质可知,函数在定义域上为单调递增的奇函数,符合题意故选:D2、A【解析】由三视图还原直观图得到几何体为高为4,底面半径为2圆柱体的一半,即可求出体积.【详解】由三视图知:几何体直观图为下图圆柱体:高为h=4,底面半径r=2圆柱体的一半,∴,故选:A3、B【解析】设出关于直线对称点的坐标,利用中点和斜率的关系列方程组,解方程组求得对称点的坐标.【详解】设关于直线对称点的坐标为,线段的中点坐标为,且在直线上,即①.由于直线的斜率为,所以线段的斜率为②.解由①②组成的方程组得,即关于直线对称点的坐标为.故选:B【点睛】本小题主要考查点关于直线的对称点的坐标的求法,考查方程的思想,属于基础题.4、A【解析】利用同角三角函数的基本关系化简函数f(x)的解析式为﹣(sinx﹣1)2+2,根据二次函数的性质,求得函数f(x)的最大值【详解】∵函数f(x)=cos2x+2sinx=1﹣sin2x+2sinx=﹣(sinx﹣1)2+2,∴sinx≤1,∴当sinx=1时,函数f(x)取得最大值为2,故选A【点睛】本题主要考查同角三角函数的基本关系,正弦函数的定义域和值域,二次函数的性质,属于中档题5、C【解析】因为,所以,故选C.6、C【解析】利用零点存在定理进行求解.【详解】因为单调递增,且;因为,所以区间内必有一个零点;故选:C.【点睛】本题主要考查零点所在区间的判断,判断的依据是零点存在定理,侧重考查数学运算的核心素养.7、D【解析】当时,为单调增函数,且,则的解集为,再结合为奇函数,可得答案【详解】当时,,所以在上单调递增,因为,所以当时,等价于,即,因为是定义在上的奇函数,所以时,在上单调递增,且,所以等价于,即,所以不等式的解集为故选:D8、D【解析】利用不等式的基本性质及作差法,对结论逐一分析,选出正确结论即可.【详解】因为,则,所以,即,故A错误;因为,所以,则,所以,即,∴,,即,故B错误;∵由,因,所以,又因为,所以,即,故C错误;由可得,,故D正确.故选:D.9、B【解析】先求出,再对四个选项一一验证即可.【详解】因为,又,解得:.故A错误;对于B:,故B正确;对于C:,故C错误;对于D:,故D错误.故选:B10、A【解析】先将变形为,即可得出结果.详解】,只需将函数的图象向左平移个长度单位.故选:A.【点睛】本题考查三角函数的平移变换,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、1或8【解析】当时,,当时,,分别计算出的值,然后在检验.【详解】当时,,解得,满足条件.当时,,解得,满足条件所以或8.故对答案为:1或8【点睛】本题考查分段函数根据函数值求自变量,属于基础题.12、π(答案不唯一)【解析】利用,可得,又,确定可得结果.【详解】因为,所以,,则,或,,又,故满足要求故答案为:π(答案不唯一)13、5【解析】利用平移变换和反函数的定义得到的解析式,进而得解.【详解】函数的图象先向下平移1个单位长度得到作关于直线对称的图象,即的反函数,则,,即,故答案为:5【点睛】关键点点睛:本题考查图像的平移变换和反函数的应用,利用反函数的性质求出的解析式是解题的关键,属于基础题.14、2【解析】利用对数性质及运算法则直接求解【详解】∵函数f(x)=log2(x2-5),∴f(3)=log2(9-5)=log24=2故答案为2【点睛】本题考查函数值的求法,考查函数性质等基础知识,考查运算求解能力,是基础题15、-1【解析】求出的坐标,由向量共线时坐标的关系可列出关于的方程,从而可求出的值.【详解】解:∵,∴,∵,,∴,解得.故答案为:-116、8100【解析】设小矩形的高为,把面积用表示出来,再根据二次函数的性质求得最大值【详解】解:设每个小矩形的高为am,则长为,记面积为则当时,所围矩形面积最大值为故答案8100【点睛】本题考查函数的应用,解题关键是寻找一个变量,把面积表示为此变量的函数,再根据函数的知识求得最值.本题属于基础题三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】(1)根据给定条件依次计算出,即可作答.(2)由(1)求出函数的解析式,再探讨在上的性质,结合图象即可作答.【小问1详解】因图像的相邻两条对称轴之间的距离为,则周期,解得,又,即,而,即,则,即,所以函数的解析式.【小问2详解】依题意,,当时,,而函数在上递增,在上递减,由得,由得,因此,函数在上单调递增,函数值从增到2,在上单调递减,函数值从2减到1,又是图象的一条对称轴,直线与函数在上的图象有两个公共点,当且仅当,如图,于是得方程在上有两个不相等的实数解时,当且仅当,所以实数m的取值范围.18、(1),.(2)证明见解析【解析】(1)根据向量的运算法则,即可求得向量,;(2)由,根据向量的运算法则,求得,即可求解.【小问1详解】解:在平行四边形中,由,,根据向量的运算法则,可得,.【小问2详解】解:因为,可得,所以.19、(1)证明见解析;(2)【解析】(1)利用函数单调性的定义,设,再将变形,证明差为正即可;(2))由(1)在上是单调递增函数,从而在上单调递增,由可求得a的值.【详解】,在上是单调递增函数,(2)在上是单调递增函数,在上单调递增,所以.【点睛】本题考查函数单调性的判断与证明,着重考查函数单调性的定义及其应用,属于中档题.20、(1)(2)(3)【解析】(1)化简式子可得,平方后利用同角三角函数的基本关系求解;(2)分子分母同除以,化切后,由两角和的正切公式可得解;(3)根据二倍角的余弦公式求解.【小问1详解】由可得,,平方得,,所以,即,因为为第三象限角,所以.【小问2详解】由可得,即,所以【小问3详解】由(1)知,,所以.21、(1)(2)【解析】(1)根据分层抽样按比例抽取,列出方程,能求出n的值;(2)35岁以下有4人,35岁以上(含35岁)有1人.设将35岁以下的4人标记为1,2,3,4,35岁以上(含35岁)的1人记
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年私人顾问招聘面试参考题库及答案
- 2025年网站开发运营经理招聘面试题库及参考答案
- 2025年快消品销售招聘面试题库及参考答案
- 2025年新能源投资分析师招聘面试题库及参考答案
- 2025年全球采购经理招聘面试题库及参考答案
- 2025年描绘师招聘面试参考题库及答案
- 2025年社会研究学者招聘面试题库及参考答案
- 2025年金融分析员招聘面试题库及参考答案
- 2025年及未来5年市场数据中国消防栓行业市场深度分析及发展战略规划报告
- 2025年全国计算机等级二级C语言考试题库及答案
- 安徽省十校联考2024-2025学年高二上学期1月期末英语试题【含答案】
- 2025-2030年中国智能熔断器(Pyro Fuse)行业市场全景评估及发展趋向研判
- 生态系统的物质循环课件-高二上学期生物人教版选择性必修24
- 《关节镜小知识》课件
- 新能源行业人力资源规划与招聘
- 蛇串疮的健康宣教
- 《股骨远端骨折》课件
- 药企地区经理胜任力
- 直线和圆的方程 直线与圆的位置关系 教学设计
- 《中华人民共和国学前教育法》专题培训
- 《自然的色彩》课件 2024-2025学年人美版(2024)初中美术七年级上册
评论
0/150
提交评论