江苏省陆慕高级中学2025年数学高二上期末经典模拟试题含解析_第1页
江苏省陆慕高级中学2025年数学高二上期末经典模拟试题含解析_第2页
江苏省陆慕高级中学2025年数学高二上期末经典模拟试题含解析_第3页
江苏省陆慕高级中学2025年数学高二上期末经典模拟试题含解析_第4页
江苏省陆慕高级中学2025年数学高二上期末经典模拟试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

江苏省陆慕高级中学2025年数学高二上期末经典模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.现有甲、乙、丙、丁、戊五位同学,分别带着A、B、C、D、E五个不同的礼物参加“抽盲盒”学游戏,先将五个礼物分别放入五个相同的盒子里,每位同学再分别随机抽取一个盒子,恰有一位同学拿到自己礼物的概率为()A. B.C. D.2.若函数单调递增,则实数a的取值范围为()A. B.C. D.3.《莱茵德纸草书》(RhindPapyrus)是世界上最古老的数学著作之一.书中有这样一道题目:把93个面包分给5个人,使每个人所得面包个数成等比数列,且使较小的两份之和等于中间一份的四分之三,则最大的一份是()个A.12 B.24C.36 D.484.已知函数的图象如图所示,则其导函数的图象可能是()A. B.C. D.5.设双曲线的虚轴长为,焦距为,则双曲线的渐近线方程为()A. B.C. D.6.函数图象如图所示,则的解析式可以为A. B.C. D.7.如果在一实验中,测得的四组数值分别是,则y与x之间的回归直线方程是()A. B.C. D.8.方程有两个不同的解,则实数k的取值范围为()A. B.C. D.9.若命题“,”是假命题,则实数的取值范围为()A. B.C. D.10.已知数列中,且满足,则()A.2 B.﹣1C. D.11.若圆与圆相切,则实数a的值为()A.或0 B.0C. D.或12.三等分角是“古希腊三大几何问题”之一,数学家帕普斯巧妙地利用圆弧和双曲线解决了这个问题.如图,在圆D中,为其一条弦,,C,O是弦的两个三等分点,以A为左焦点,B,C为顶点作双曲线T.设双曲线T与弧的交点为E,则.若T的方程为,则圆D的半径为()A. B.1C.2 D.二、填空题:本题共4小题,每小题5分,共20分。13.__________14.已知双曲线,左右焦点分别为,若过右焦点的直线与以线段为直径的圆相切,且与双曲线在第二象限交于点,且轴,则双曲线的离心率是_________.15.已知曲线与曲线有相同的切线,则________16.设F为抛物线C:的焦点,过F且倾斜角为30°的直线交C于A,B两点,O为坐标原点,则的面积为______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,在棱长为2的正方体中,E,F分别为AB,BC上的动点,且.(1)求证:;(2)当时,求点A到平面的距离.18.(12分)在平面直角坐标系中,动点到点的距离等于点到直线的距离.(1)求动点的轨迹方程;(2)记动点的轨迹为曲线,过点的直线与曲线交于两点,在轴上是否存在一点,使若存在,求出点的坐标;若不存在,请说明理由.19.(12分)求函数在区间上的最大值和最小值20.(12分)在二项式的展开式中;(1)若,求常数项;(2)若第4项的系数与第7项的系数比为,求:①二项展开式中的各项的二项式系数之和;②二项展开式中各项的系数之和21.(12分)已知曲线在处的切线方程为,且.(1)求的解析式;(2)若时,不等式恒成立,求实数的取值范围.22.(10分)在中,角A,B,C所对的边分别为a,b,c,且,,.(1)求角B;(2)求a,c的值及的面积.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】利用排列组合知识求出每位同学再分别随机抽取一个盒子,恰有一位同学拿到自己礼物的情况个数,以及五人抽取五个礼物的总情况,两者相除即可.【详解】先从五人中抽取一人,恰好拿到自己礼物,有种情况,接下来的四人分为两种情况,一种是两两一对,两个人都拿到对方的礼物,有种情况,另一种是四个人都拿到另外一个人的礼物,不是两两一对,都拿到对方的情况,由种情况,综上:共有种情况,而五人抽五个礼物总数为种情况,故恰有一位同学拿到自己礼物的概率为.故选:D2、D【解析】根据函数的单调性,可知其导数在R上恒成立,分离参数,即可求得答案.【详解】由题意可知单调递增,则在R上恒成立,可得恒成立,当时,取最小值-1,故,故选:D3、D【解析】设等比数列的首项为,公比,根据题意,由求解.【详解】设等比数列的首项为,公比,由题意得:,即,解得,所以,故选:D4、A【解析】根据原函数图象判断出函数单调性,由此判断导函数的图象.【详解】原函数在上从左向右有增、减、增,个单调区间;在上递减.所以导函数在上从左向右应为:正、负、正;在上应为负.所以A选项符合.故选:A5、B【解析】求出、的值,即可得出双曲线的渐近线方程.【详解】由已知可得,,则,因此,该双曲线的渐近线方程为.故选:B.6、A【解析】利用排除法:对于B,令得,,即有两个零点,不符合题意;对于C,当时,,当且仅当时等号成立,即函数在区间上存在最大值,不符合题意;对于D,的定义域为,不符合题意;本题选择A选项.点睛:函数图象的识辨可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置.(2)从函数的单调性,判断图象的变化趋势.(3)从函数的奇偶性,判断图象的对称性.(4)从函数的特征点,排除不合要求的图象.利用上述方法排除、筛选选项7、B【解析】根据已知数据求样本中心点,由样本中心点在回归直线上,将其代入各选项的回归方程验证即可.【详解】由题设,,因为回归直线方程过样本点中心,A:,排除;B:,满足;C:,排除;D:,排除.故选:B8、C【解析】转化为圆心在原点半径为1的上半圆和表示恒过定点的直线始终有两个公共点,结合图形可得答案.【详解】令,平方得表示圆心在原点半径为1的上半圆,表示恒过定点的直线,方程有两个不同的解即半圆和直线要始终有两个公共点,如图圆心到直线的距离为,解得,当直线经过时由得,当直线经过时由得,所以实数k的取值范围为.故选:C.9、A【解析】根据命题与它的否定命题一真一假,写出该命题的否定命题,再求实数的取值范围【详解】解:命题“,”是假命题,则它的否定命题“,”是真命题,时,不等式为,显然成立;时,应满足,解得,所以实数的取值范围是故选:A10、C【解析】首先根据数列的递推公式求出数列的前几项,即可得到数列的周期性,即可得解;【详解】解:因为且,所以,,,所以是周期为的周期数列,所以,故选:C11、D【解析】根据给定条件求出两圆圆心距,再借助两圆相切的充要条件列式计算作答.【详解】圆的圆心,半径,圆的圆心,半径,而,即点不可能在圆内,则两圆必外切,于是得,即,解得,所以实数a的值为或.故选:D12、C【解析】由题设写出双曲线的方程,对比系数,求出即可获解【详解】由题知所以双曲线的方程为又由题设的方程为,所以,即设AB的中点为,则由.所以,即圆的半径为2故选:C二、填空题:本题共4小题,每小题5分,共20分。13、【解析】先由题得到,再整体代入化简即得解.【详解】因为,所以,则故答案为【点睛】本题主要考查差角的正切公式,意在考查学生对该知识的理解掌握水平,属于基础题.14、【解析】根据题意可得,进而可得,再根据,可得再根据双曲线的定义,即可得到,进而求出结果.【详解】如图所示:设切点为,所以,又轴所以,所以,由,,所以又,所以故答案为:.15、0【解析】设切点分别为,.利用导数的几何意义可得,则.由,,计算可得,进而求得点坐标代入方程即可求得结果.【详解】设切点分别为,由题意可得,则,即因为,,所以,即,解得,所以,则,解得故答案为:016、##2.25##【解析】求出直线的方程,与抛物线方程联立后得到两根之和,结合焦点弦弦长公式求出,用点到直线距离公式求高,进而求出三角形面积.【详解】易知抛物线中,焦点,直线的斜率,故直线的方程为,代人抛物线方程,整理得.设,则,由抛物线的定义可得弦长,原点到直线的距离,所以面积.故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析(2)【解析】(1)如图,以为轴,为轴,为轴建立空间直角坐标系,利用空间向量法分别求出和,再证明即可;(2)利用空间向量的数量积求出平面的法向量,结合求点到面距离的向量法即可得出结果.【小问1详解】证明:如图,以为轴,为轴,为轴,建立空间直角坐标系,则,,,,所以,,所以,故,所以;【小问2详解】当时,,,,,则,,,设是平面的法向量,则由,解得,取,得,设点A到平面的距离为,则,所以点A到平面的距离为.18、(1);(2)存在,.【解析】(1)利用抛物线的定义即求;(2)由题可设直线的方程为,利用韦达定理法结合条件可得,即得.【小问1详解】因为动点到点的距离等于点到直线的距离,所以动点到点的距离和它到直线的距离相等,所以点的轨迹是以为焦点,以直线为准线的抛物线,设抛物线方程为,由,得,所以动点的轨迹方程为.【小问2详解】由题意可知,直线的斜率不为0,故设直线的方程为,.联立,得,恒成立,由韦达定理,得,,假设存在一点,满足题意,则直线的斜率与直线的斜率满足,即,所以,所以解得,所以存在一点,满足,点的坐标为.19、,【解析】先求导函数,再根据导函数得到单调区间,比较极值和端点值,即可得到最大值和最小值.【详解】解:依题意,,令,得或,所以函数在和上单调递增,在上单调递减,又,,,所以,20、(1)60(2)①1024;②1【解析】(1)根据二项式定理求解(2)根据二项式定理与条件求解,二项式系数之和为,系数和可赋值【小问1详解】若,则,(,…,9)令∴∴常数项为.【小问2详解】,(,…,),解得①②令,得系数和为21、(1);(2).【解析】(1)根据导数的几何意义得,结合对数的运算性质求出m,利用直线的点斜式方程即可得出切线方程;(2)由(1)将不等式变形为,利用导数研究函数在、、时的单调性,即可得出结果.【小问1详解】,∴,,,,,切线方程为,即,∴.【小问

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论