2026届云南省绿春县二中数学高二第一学期期末预测试题含解析_第1页
2026届云南省绿春县二中数学高二第一学期期末预测试题含解析_第2页
2026届云南省绿春县二中数学高二第一学期期末预测试题含解析_第3页
2026届云南省绿春县二中数学高二第一学期期末预测试题含解析_第4页
2026届云南省绿春县二中数学高二第一学期期末预测试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2026届云南省绿春县二中数学高二第一学期期末预测试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.若,则n的值为()A.7 B.8C.9 D.102.若,则()A.1 B.2C.4 D.83.已知向量,,则“”是“”的()A.充分不必要条件 B.必要不充分条件C.充分必要条件 D.既不充分也不必要条件4.设函数是奇函数的导函数,,当时,,则使得成立的的取值范围是A. B.C D.5.如图,棱长为1的正方体中,为线段上的动点,则下列结论错误的是A.B.平面平面C.的最大值为D.的最小值为6.命题“”的一个充要条件是()A. B.C. D.7.已知双曲线,其中一条渐近线与x轴的夹角为,则双曲线的渐近线方程是()A. B.C. D.8.已知等差数列的公差为,前项和为,等比数列的公比为,前项和为.若,则()A. B.C. D.9.某校为了解学生学习的情况,采用分层抽样的方法从高一人、高二人、高三人中,抽取人进行问卷调查.已知高二被抽取的人数为人,那么高三被抽取的人数为()A. B.C. D.10.已知椭圆的短轴长为8,且一个焦点是圆的圆心,则该椭圆的左顶点为()A B.C. D.11.已知双曲线的渐近线方程为,则该双曲线的离心率等于()A. B.C.2 D.412.双曲线实轴长为()A.1 B.C.2 D.二、填空题:本题共4小题,每小题5分,共20分。13.已知函数,则不等式的解集为____________14.过点作斜率为的直线与椭圆相交于、两个不同点,若是的中点,则该椭圆的离心率___________.15.已知直线:与直线:平行,则的值为___________.16.已知圆,则圆心坐标为______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知数列为等差数列,是公比为2的等比数列,且满足(1)求数列和的通项公式;(2)令求数列的前n项和;18.(12分)在中,内角A,B,C对应的边分别为a,b,c,已知.(1)求B;(2)若,,求b的值.19.(12分)已知数列和中,,且,.(1)写出,,,,猜想数列和的通项公式并证明;(2)若对于任意都有,求的取值范围.20.(12分)在平面直角坐标系xOy中,直线l的参数方程为(t为参数),直线l与x轴交于点P.以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为(1)求直线l的普通方程与曲线C的直角坐标方程;(2)若直线l与曲线C相交于A,B两点,求的值21.(12分)如图,PD垂直于梯形ABCD所在的平面,∠ADC=∠BAD=90°,F为PA中点,,.四边形PDCE为矩形,线段PC交DE于点N(1)求证:AC∥平面DEF;(2)求二面角A-BC-P的余弦值22.(10分)如图所示在多面体中,平面,四边形是正方形,,,,.(1)求证:直线平面;(2)求平面与平面夹角的余弦值.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】根据给定条件利用组合数的性质计算作答【详解】因为,则由组合数性质有,即,所以n的值为10.故选:D2、D【解析】由题意结合导数的运算可得,再由导数的概念即可得解.【详解】由题意,所以,所以.故选:D.3、A【解析】根据平面向量垂直的性质,结合平面向量数量积的坐标表示公式、充分性、必要性的定义进行求解判断即可.详解】当时,有,显然由,但是由不一定能推出,故选:A4、B【解析】构造函数,可知函数为奇函数,利用导数分析出函数在上的单调性,并得出,然后分别在和解不等式,由此可得出不等式的解集.【详解】构造函数,该函数的定义域为,由于函数为上的奇函数,则,所以,函数为上的奇函数,且,,.当时,,此时,函数单调递增,由,可得,解得;当时,则函数单调递增,由,可得,解得.综上所述,使得成立的的取值范围是.故选:B.【点睛】本题考查利用函数的单调性求解函数不等式,根据导数不等式的结构构造合适的函数是解题的关键,考查分析问题和解决问题的能力,属于中等题.5、C【解析】∵,,∴面,面,∴,A正确;∵平面即为平面,平面即为平面,且平面,∴平面平面,∴平面平面,∴B正确;当时,为钝角,∴C错;将面与面沿展成平面图形,线段即为的最小值,在中,,利用余弦定理解三角形得,即,∴D正确,故选C考点:立体几何中的动态问题【思路点睛】立体几何问题的求解策略是通过降维,转化为平面几何问题,具体方法表现为:

求空间角、距离,归到三角形中求解;2.对于球的内接外切问题,作适当的截面,既要能反映出位置关系,又要反映出数量关系;求曲面上两点之间的最短距离,通过化曲为直转化为同一平面上两点间的距离6、D【解析】结合不等式的基本性质,利用充分条件和必要条件的定义判断.【详解】A.当时,满足,推不出,故不充分;B.当时,满足,推不出,故不充分;C.当时,推不出,故不必要;D.因为,故充要,故选:D7、C【解析】由已知条件计算可得,即得到结果.【详解】由双曲线,可知渐近线方程为,又双曲线的一条渐近线与x轴的夹角为,故,即渐近线方程为.故选:C8、D【解析】用基本量表示可得基本量的关系式,从而可得,故可得正确的选项.【详解】若,则,而,此时,这与题设不合,故,故,故,而,故,此时不确定,故选:D.9、C【解析】利用分层抽样求出的值,进而可求得高三被抽取的人数.【详解】由分层抽样可得,可得,设高三所抽取的人数为,则,解得.故选:C.10、D【解析】根据椭圆的一个焦点是圆的圆心,求得c,再根据椭圆的短轴长为8求得b即可.【详解】圆的圆心是,所以椭圆的一个焦点是,即c=3,又椭圆的短轴长为8,即b=4,所以椭圆长半轴长为,所以椭圆的左顶点为,故选:D11、A【解析】由双曲线的渐近线方程,可得,再由的关系和离心率公式,计算即可得到所求值【详解】解:双曲线的渐近线方程为,由题意可得即,可得由可得,故选:A.12、B【解析】由双曲线的标准方程可求出,即可求双曲线的实轴长.【详解】由可得:,,即,实轴长,故选:B二、填空题:本题共4小题,每小题5分,共20分。13、【解析】易得函数为奇函数,则不等式即为不等式,利用导数判断函数得单调性,再根据函数得单调性解不等式即可.【详解】解:函数得定义域为R,因为,所以函数为奇函数,则不等式即为不等式,,所以函数在R上是增函数,所以,解得,即不等式的解集为.故答案为:.14、【解析】利用点差法可求得的值,利用离心率公式的值.【详解】设点、,则,由已知可得,由题意可得,将两个等式相减得,所以,,因此,.故答案为:.15、-1【解析】根据两直线平行的条件列式求解即可.【详解】由题意可知,的斜率,的斜率,∵,∴解得.故当时,直线:与直线:平行.故答案为:-1.16、【解析】将圆的一般方程配方程标准方程即可.【详解】圆,即,它的圆心坐标是.故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1),(2)【解析】(1)根据等差数列和等比数列通项公式得到,根据通项公式的求法得到结果;(2)分组求和即可.【小问1详解】设的公差为,由已知,有解得,所以的通项公式为,的通项公式为.【小问2详解】,分组求和,分别根据等比数列求和公式与等差数列求和公式得到:.18、(1);(2).【解析】(1)利用正弦定理,将边化角转化,即可求得;(2)利用余弦定理,结合(1)中所求,即可求得.【小问1详解】在中,由正弦定理得,因为,所以,所以,又因为,所以.【小问2详解】在中,由余弦定理得,代入数据解得,所以19、(1),,,证明见解析(2)【解析】(1)已知两式相加化简可得是首项为2,公比为2的等比数列,则,两式相减化简可得是首项为2,公差为2的等差数列,则,(2)由题意可得只需要,令,由和解不等式可求出的最小值,从而可求得的取值范围【小问1详解】由已知得,猜想,,由题得,所以易知,即所以是首项为2,公比为2的等比数列,故,由题得,所以,即,所以是首项为2,公差为2的等差数列,所以.【小问2详解】因为任意都有,即,只需要,记,易知,故,当时,,解得或,当时,,解得,因为,所以,所以,所以的取值范围是.20、(1)直线l的普通方程,曲线C的直角坐标方程(2)【解析】(1)直接利用转换关系,在参数方程、极坐标方程和直角坐标方程之间进行转换;(2)利用一元二次方程根和系数关系式的应用求出结果【小问1详解】解:直线的参数方程为为参数),转换为直角坐标方程,曲线的极坐标方程为,根据,转换为直角坐标方程为;小问2详解】直线转换为参数方程为为参数),代入,得到,所以,,所以21、(1)证明见解析;(2).【解析】(1)记PC交DE于点N,然后证明FN∥AC,进而通过线面平行的判定定理证明问题;(2)建立空间直角坐标系,进而通过空间向量夹角公式求得答案.【小问1详解】因为四边形PDCE为矩形,线段PC交DE于点N,所以N为PC的中点连接FN,在△PAC中,F,N分别为PA,PC的中点,所以FN∥AC,因为平面DEF,平面DEF,所以AC∥平面DEF.【小问2详解】因为PD垂直于梯形ABCD所在的平面,∠ADC=∠BAD=90°,所以DA,DC,DP两两垂直,如图以D为原点,分别以DA,DC,DP所在直线为x,y,z轴,建立空间直角坐标系则,,,,所以,设平面PBC的法向量为,则,令x=1,则.因为PD垂直于梯形ABCD所在的平面,所以是平面ABC的一个法向量,所以.由图可知所求二面角为锐角,即所求二面角的余弦值为.22、(1)证明见解析;

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论