初一数学下册期末压轴题检测及解析_第1页
初一数学下册期末压轴题检测及解析_第2页
初一数学下册期末压轴题检测及解析_第3页
初一数学下册期末压轴题检测及解析_第4页
初一数学下册期末压轴题检测及解析_第5页
已阅读5页,还剩42页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

一、解答题1.如图,在平面直角坐标系中,直线与x轴交于点,与y轴交于点,且(1)求;(2)若为直线上一点.①的面积不大于面积的,求P点横坐标x的取值范围;②请直接写出用含x的式子表示y.(3)已知点,若的面积为6,请直接写出m的值.2.问题情境:(1)如图1,,,.求度数.小颖同学的解题思路是:如图2,过点作,请你接着完成解答.问题迁移:(2)如图3,,点在射线上运动,当点在、两点之间运动时,,.试判断、、之间有何数量关系?(提示:过点作),请说明理由;(3)在(2)的条件下,如果点在、两点外侧运动时(点与点、、三点不重合),请你猜想、、之间的数量关系并证明.3.如图1,把一块含30°的直角三角板ABC的BC边放置于长方形直尺DEFG的EF边上.(1)根据图1填空:∠1=°,∠2=°;(2)现把三角板绕B点逆时针旋转n°.①如图2,当n=25°,且点C恰好落在DG边上时,求∠1、∠2的度数;②当0°<n<180°时,是否会存在三角板某一边所在的直线与直尺(有四条边)某一边所在的直线垂直?如果存在,请直接写出所有n的值和对应的那两条垂线;如果不存在,请说明理由.4.已知:直线AB∥CD,M,N分别在直线AB,CD上,H为平面内一点,连HM,HN.(1)如图1,延长HN至G,∠BMH和∠GND的角平分线相交于点E.求证:2∠MEN﹣∠MHN=180°;(2)如图2,∠BMH和∠HND的角平分线相交于点E.①请直接写出∠MEN与∠MHN的数量关系:;②作MP平分∠AMH,NQ∥MP交ME的延长线于点Q,若∠H=140°,求∠ENQ的度数.(可直接运用①中的结论)5.(1)(问题)如图1,若,,.求的度数;(2)(问题迁移)如图2,,点在的上方,问,,之间有何数量关系?请说明理由;(3)(联想拓展)如图3所示,在(2)的条件下,已知,的平分线和的平分线交于点,用含有的式子表示的度数.6.如图1,已知直线m∥n,AB是一个平面镜,光线从直线m上的点O射出,在平面镜AB上经点P反射后,到达直线n上的点Q.我们称OP为入射光线,PQ为反射光线,镜面反射有如下性质:入射光线与平面镜的夹角等于反射光线与平面镜的夹角,即∠OPA=∠QPB.(1)如图1,若∠OPQ=82°,求∠OPA的度数;(2)如图2,若∠AOP=43°,∠BQP=49°,求∠OPA的度数;(3)如图3,再放置3块平面镜,其中两块平面镜在直线m和n上,另一块在两直线之间,四块平面镜构成四边形ABCD,光线从点O以适当的角度射出后,其传播路径为O→P→Q→R→O→P→…试判断∠OPQ和∠ORQ的数量关系,并说明理由.7.先阅读材料,再解答问题:我国数学家华罗庚在一次出国访问途中,看到飞机上邻座的乘客阅读的杂志上有一道智力题:求59319的立方根,华罗庚脱口而出,给出了答案,众人十分惊讶,忙问计算的奥妙,你知道华罗庚怎样迅速而准确地计算出结果吗?请你按下面的步骤也试一试:(1)我们知道,,那么,请你猜想:59319的立方根是_______位数(2)在自然数1到9这九个数字中,________,________,________.猜想:59319的个位数字是9,则59319的立方根的个位数字是________.(3)如果划去59319后面的三位“319”得到数59,而,,由此可确定59319的立方根的十位数字是________,因此59319的立方根是________.(4)现在换一个数103823,你能按这种方法得出它的立方根吗?8.[阅读材料]∵,即,∴,∴的整数部分为1,∴的小数部分为[解决问题](1)填空:的小数部分是__________;(2)已知是的整数部分,是的小数部分,求代数式的平方根为______.9.规定:求若干个相同的有理数(均不等于0)的除法运算叫做除方,如2÷2÷2,(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)等,类比有理数的乘方,我们把2÷2÷2记作2③,读作“2的圈3次方,”(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)记作(﹣3)④,读作:“(﹣3)的圈4次方”.一般地,把个记作aⓝ,读作“a的圈n次方”(初步探究)(1)直接写出计算结果:2③,(﹣)③.(深入思考)2④我们知道,有理数的减法运算可以转化为加法运算,除法运算可以转化为乘法运算,有理数的除方运算如何转化为乘方运算呢?(2)试一试,仿照上面的算式,将下列运算结果直接写成幂的形式.5⑥;(﹣)⑩.(3)猜想:有理数a(a≠0)的圈n(n≥3)次方写成幂的形式等于多少.(4)应用:求(-3)8×(-3)⑨-(﹣)9×(﹣)⑧10.观察下列各式,并用所得出的规律解决问题:(1),,,……,,,……由此可见,被开方数的小数点每向右移动______位,其算术平方根的小数点向______移动______位.(2)已知,,则_____;______.(3),,,……小数点的变化规律是_______________________.(4)已知,,则______.11.阅读材料,回答问题:(1)对于任意实数x,符号表示“不超过x的最大整数”,在数轴上,当x是整数,就是x,当x不是整数时,是点x左侧的第一个整数点,如,,,,则________,________.(2)2015年11月24日,杭州地铁1号线下沙延伸段开通运营,极大的方便了下沙江滨居住区居民的出行,杭州地铁收费采用里程分段计价,起步价为2元/人次,最高价为8元/人次,不足1元按1元计算,具体权费标准如下:里程范围4公里以内(含4公里)4-12公里以内(含12公里)12-24公里以内(含24公里)24公里以上收费标准2元4公里/元6公里/元8公里/元①若从下沙江滨站到文海南路站的里程是3.07公里,车费________元,下沙江滨站到金沙湖站里程是7.93公里,车费________元,下沙江滨站到杭州火东站里程是19.17公里,车费________元;②若某人乘地铁花了7元,则他乘地铁行驶的路程范围(不考虑实际站点下车里程情况)?12.观察下列两个等式:,给出定义如下:我们称使等式成立的一对有理数为“白马有理数对”,记为,如:数对都是“白马有理数对”.(1)数对中是“白马有理数对”的是_________;(2)若是“白马有理数对”,求的值;(3)若是“白马有理数对”,则是“白马有理数对”吗?请说明理由.(4)请再写出一对符合条件的“白马有理数对”_________(注意:不能与题目中已有的“白马有理数对”重复)13.已知,在平面直角坐标系中,AB⊥x轴于点B,点A满足,平移线段AB使点A与原点重合,点B的对应点为点C.(1)则a=,b=,点C坐标为;(2)如图1,点D(m,n)在线段BC上,求m,n满足的关系式;(3)如图2,E是线段OB上一动点,以OB为边作∠BOG=∠AOB,交BC于点G,连CE交OG于点F,当点E在线段OB上运动过程中,的值是否会发生变化?若变化请说明理由,若不变,请求出其值.14.已知,定点,分别在直线,上,在平行线,之间有一动点.(1)如图1所示时,试问,,满足怎样的数量关系?并说明理由.(2)除了(1)的结论外,试问,,还可能满足怎样的数量关系?请画图并证明(3)当满足,且,分别平分和,①若,则__________°.②猜想与的数量关系.(直接写出结论)15.如图所示,A(1,0)、点B在y轴上,将三角形OAB沿x轴负方向平移,平移后的图形为三角形DEC,且点C的坐标为(-3,2).(1)直接写出点E的坐标;D的坐标(3)点P是线段CE上一动点,设∠CBP=x°,∠PAD=y°,∠BPA=z°,确定x,y,z之间的数量关系,并证明你的结论.16.阅读理解:定义:,,为数轴上三点,若点到点的距离是它到点的时距离的(为大于1的常数)倍,则称点是的倍点,且当是的倍点或的倍点时,我们也称是和两点的倍点.例如,在图1中,点是的2倍点,但点不是的2倍点.(1)特值尝试.①若,图1中,点______是的2倍点.(填或)②若,如图2,,为数轴上两个点,点表示的数是,点表示的数是4,数______表示的点是的3倍点.(2)周密思考:图2中,一动点从出发,以每秒2个单位的速度沿数轴向左运动秒,若恰好是和两点的倍点,求所有符合条件的的值.(用含的式子表示)(3)拓展应用数轴上两点间的距离不超过30个单位长度时,称这两点处于“可视距离”.若(2)中满足条件的和两点的所有倍点均处于点的“可视距离”内,请直接写出的取值范围.(不必写出解答过程)17.如图1,在直角坐标系中直线与、轴的交点分别为,,且满足.(1)求、的值;(2)若点的坐标为且,求的值;(3)如图2,点坐标是,若以2个单位/秒的速度向下平移,同时点以1个单位/秒的速度向左平移,平移时间是秒,若点落在内部(不包含三角形的边),求的取值范围.18.如图1,已知,点A(1,a),AH⊥x轴,垂足为H,将线段AO平移至线段BC,点B(b,0),其中点A与点B对应,点O与点C对应,a、b满足.(1)填空:①直接写出A、B、C三点的坐标A(________)、B(________)、C(________);②直接写出三角形AOH的面积________.(2)如图1,若点D(m,n)在线段OA上,证明:4m=n.(3)如图2,连OC,动点P从点B开始在x轴上以每秒2个单位的速度向左运动,同时点Q从点O开始在y轴上以每秒1个单位的速度向下运动.若经过t秒,三角形AOP与三角形COQ的面积相等,试求t的值及点P的坐标.19.五一节前,某商店拟购进A、B两种品牌的电风扇进行销售,已知购进3台A种品牌电风扇所需费用与购进2台B种品牌电风扇所需费用相同,购进1台A种品牌电风扇与2台B种品牌电风扇共需费用400元.(1)求A、B两种品牌电风扇每台的进价分别是多少元?(2)销售时,该商店将A种品牌电风扇定价为180元/台,B种品牌电风扇定价为250元/台,商店拟用1000元购进这两种风扇(1000元刚好全部用完),为能在销售完这两种电风扇后获得最大的利润,该商店应采用哪种进货方案?20.题目:满足方程组的x与y的值的和是2,求k的值.按照常规方法,顺着题目思路解关于x,y的二元一次方程组,分别求出xy的值(含有字母k),再由x+y=2,构造关于k的方程求解,从而得出k值.(1)某数学兴趣小组对本题的解法又进行了探究利用整体思想,对于方程组中每个方程变形得到“x+y”这个整体,或者对方程组的两个方程进行加减变形得到“x+y”整体值,从而求出k值请你运用这种整体思想的方法,完成题目的解答过程.(2)小勇同学的解答是:观察方程①,令3x=k,5y=1解得y=,3x+y=2,∴x=∴k=3×=把x=,y=代入方程②得k=﹣所以k的值为或﹣.请诊断分析并评价“小勇同学的解答”.21.先阅读下面材料,再完成任务:有些关于方程组的问题,欲求的结果不是每一个未知数的值,而是关于未知数的代数式的值,如以下问题:已知实数,满足,……①,,……②,求和的值.本题常规思路是将①②两式联立组成方程组,解得,的值再代入欲求值的代数式得到答案,常规思路运算量比较大.其实,仔细观察两个方程未知数的系数之间的关系,本题还可以通过适当变形整体求得代数式的值,如由①-②可得,由①+②×2可得,这样的解题思想就是通常所说的“整体思想”解决问题:(1)已知二元一次方程组,则______,______;(2)某班级组织活动购买小奖品,买20支铅笔、3块橡皮、2本日记本共需32元,买39支铅笔、5块橡皮、3本日记木共需58元,则购买5支铅笔、5块橡皮、5本日记本共需多少元?(3)对于实数,,定义新运算:,其中,,是常数,等式右边是通常的加法和乘法运算.已知,,那么______.22.如图,,是的平分线,和的度数满足方程组,(1)求和的度数;(2)求证:.(3)求的度数.23.已知AM∥CN,点B为平面内一点,AB⊥BC于B.(1)如图1,过点B作BD⊥AM于点D,∠BAD与∠C有何数量关系,并说明理由;(2)如图2,在(1)问的条件下,点E,F在DM上,连接BE,BF,CF,若BF平分∠DBC,BE平分∠ABD,∠FCB+∠NCF=180°,∠BFC=5∠DBE,求∠ABE的度数.24.某数码专营店销售A,B两种品牌智能手机,这两种手机的进价和售价如表所示:AB进价(元/部)33003700售价(元/部)38004300(1)该店销售记录显示,三月份销售A、B两种手机共34部,且销售A种手机的利润恰好是销售B种手机利润的2倍,求该店三月份售出A种手机和B种手机各多少部?(2)根据市场调研,该店四月份计划购进这两种手机共40部,要求购进B种手机数不低于A种手机数的,用于购买这两种手机的资金低于140000元,请通过计算设计所有可能的进货方案.25.阅读材料:如果x是一个有理数,我们把不超过x的最大整数记作[x].例如,[3.2]=3,[5]=5,[-2.1]=-3.那么,x=[x]+a,其中0≤a<1.例如,3.2=[3.2]+0.2,5=[5]+0,-2.1=[-2.1]+0.9.请你解决下列问题:(1)[4.8]=,[-6.5]=;(2)如果[x]=3,那么x的取值范围是;(3)如果[5x-2]=3x+1,那么x的值是;(4)如果x=[x]+a,其中0≤a<1,且4a=[x]+1,求x的值.26.在平面直角坐标系xOy中,已知点M(a,b).如果存在点N(a′,b′),满足a′=|a+b|,b′=|a﹣b|,则称点N为点M的“控变点”.(1)点A(﹣1,2)的“控变点”B的坐标为;(2)已知点C(m,﹣1)的“控变点”D的坐标为(4,n),求m,n的值;(3)长方形EFGH的顶点坐标分别为(1,1),(5,1),(5,4),(1,4).如果点P(x,﹣2x)的“控变点”Q在长方形EFGH的内部,直接写出x的取值范围.27.对、定义了一种新运算T,规定(其中,均为非零常数),这里等式右边是通常的四则运算,例如:,已知,.(1)求,的值;(2)求.(3)若关于的不等式组恰好有4个整数解,求的取值范围.28.对于三个数,,,表示,,这三个数的平均数,表示,,这三个数中最小的数,如:,;,.解决下列问题:(1)填空:______;(2)若,求的取值范围;(3)①若,那么______;②根据①,你发现结论“若,那么______”(填,,大小关系);③运用②解决问题:若,求的值.29.如图1,在平面直角坐标系中,A(a,0),C(b,2),且满足,过C作轴于B,(1)求a,b的值;(2)在y轴上是否存在点P,使得△ABC和△OCP的面积相等,若存在,求出点P坐标,若不存在,试说明理由.(3)若过B作BD∥AC交y轴于D,且AE,DE分别平分∠CAB,∠ODB,如图2,图3,①求:∠CAB+∠ODB的度数;②求:∠AED的度数.30.对,定义一种新的运算,规定:(其中).(1)若已知,,则_________.(2)已知,.求,的值;(3)在(2)问的基础上,若关于正数的不等式组恰好有2个整数解,求的取值范围.【参考答案】***试卷处理标记,请不要删除一、解答题1.(1)4;(2)①或;②;(3)或.【分析】(1)先根据偶次方和绝对值的非负性求出的值,从而可得点的坐标和的长,再利用直角三角形的面积公式即可得;(2)①分和两种情况,先分别求出和的面积,再根据已知条件建立不等式,解不等式即可得;②分和两种情况,利用、和的面积关系建立等式,化简即可得;(3)过点作轴的平行线,交直线于点,从而可得,再分、和三种情况,分别利用三角形的面积公式建立方程,解方程即可得.【详解】解:(1)由题意得:,解得,,,轴轴,;(2)①的面积不大于面积的,的面积小于的面积,则分以下两种情况:如图,当时,则,,因此有,解得,此时的取值范围为;如图,当时,则,,因此有,解得,此时的取值范围为,综上,点横坐标的取值范围为或;②当时,则,,由(2)①可知,,则,即;如图,当时,则,,,,,解得,综上,;(3)过点作轴的平行线,交直线于点,由(2)②可知,,则,由题意,分以下三种情况:①如图,当时,则,,解得,不符题设,舍去;②如图,当时,则,,解得或(不符题设,舍去);③如图,当时,则,,解得,符合题设,综上,的值为或.【点睛】本题考查了偶次方和绝对值的非负性、坐标与图形等知识点,较难的是题(3),正确分三种情况讨论是解题关键.2.(1)见解析;(2),理由见解析;(3)①当在延长线时(点不与点重合),;②当在之间时(点不与点,重合),.理由见解析【分析】(1)过P作PE∥AB,构造同旁内角,利用平行线性质,可得∠APC=113°;(2)过过作交于,,推出,根据平行线的性质得出,即可得出答案;(3)画出图形(分两种情况:①点P在BA的延长线上,②当在之间时(点不与点,重合)),根据平行线的性质即可得出答案.【详解】解:(1)过作,,,,,,,,;(2),理由如下:如图3,过作交于,,,,,,,又;(3)①当在延长线时(点不与点重合),;理由:如图4,过作交于,,,,,,,,又,;②当在之间时(点不与点,重合),.理由:如图5,过作交于,,,,,,,,又.【点睛】本题考查了平行线的性质的应用,主要考查学生的推理能力,解决问题的关键是作辅助线构造内错角以及同旁内角.3.(1)120,90;(2)①∠1=120°-n°,∠2=90°+n°;②见解析【分析】(1)根据邻补角的定义和平行线的性质解答;(2)①根据邻补角的定义求出∠ABE,再根据两直线平行,同位角相等可得∠1=∠ABE,根据两直线平行,同旁内角互补求出∠BCG,然后根据周角等于360°计算即可得到∠2;②结合图形,分AB、BC、AC三条边与直尺垂直讨论求解.【详解】解:(1)∠1=180°-60°=120°,∠2=90°;故答案为:120,90;(2)①如图2,∵∠ABC=60°,∴∠ABE=180°-60°-n°=120°-n°,∵DG∥EF,∴∠1=∠ABE=120°-n°,∠BCG=180°-∠CBF=180°-n°,∵∠ACB+∠BCG+∠2=360°,∴∠2=360°-∠ACB-∠BCG=360°-90°-(180°-n°)=90°+n°;②当n=30°时,∵∠ABC=60°,∴∠ABF=30°+60°=90°,AB⊥DG(EF);当n=90°时,∠C=∠CBF=90°,∴BC⊥DG(EF),AC⊥DE(GF);当n=120°时,∴AB⊥DE(GF).【点睛】本题考查了平行线角的计算,垂线的定义,主要利用了平行线的性质,直角三角形的性质,读懂题目信息并准确识图是解题的关键.4.(1)见解析;(2)①2∠MEN+∠MHN=360°;②20°【分析】(1)过点E作EP∥AB交MH于点Q,利用平行线的性质、角平分线性质、邻补角和为180°,角与角之间的基本运算、等量代换等即可得证.(2)①过点H作GI∥AB,利用(1)中结论2∠MEN﹣∠MHN=180°,利用平行线的性质、角平分线性质、邻补角和为180°,角与角之间的基本运算、等量代换等得出∠AMH+∠HNC=360°﹣(∠BMH+∠HND),进而用等量代换得出2∠MEN+∠MHN=360°.②过点H作HT∥MP,由①的结论得2∠MEN+∠MHN=360°,∠H=140°,∠MEN=110°.利用平行线性质得∠ENQ+∠ENH+∠NHT=180°,由角平分线性质及邻补角可得∠ENQ+∠ENH+140°﹣(180°﹣∠BMH)=180°.继续使用等量代换可得∠ENQ度数.【详解】解:(1)证明:过点E作EP∥AB交MH于点Q.如答图1∵EP∥AB且ME平分∠BMH,∴∠MEQ=∠BME=∠BMH.∵EP∥AB,AB∥CD,∴EP∥CD,又NE平分∠GND,∴∠QEN=∠DNE=∠GND.(两直线平行,内错角相等)∴∠MEN=∠MEQ+∠QEN=∠BMH+∠GND=(∠BMH+∠GND).∴2∠MEN=∠BMH+∠GND.∵∠GND+∠DNH=180°,∠DNH+∠MHN=∠MON=∠BMH.∴∠DHN=∠BMH﹣∠MHN.∴∠GND+∠BMH﹣∠MHN=180°,即2∠MEN﹣∠MHN=180°.(2)①:过点H作GI∥AB.如答图2由(1)可得∠MEN=(∠BMH+∠HND),由图可知∠MHN=∠MHI+∠NHI,∵GI∥AB,∴∠AMH=∠MHI=180°﹣∠BMH,∵GI∥AB,AB∥CD,∴GI∥CD.∴∠HNC=∠NHI=180°﹣∠HND.∴∠AMH+∠HNC=180°﹣∠BMH+180°﹣∠HND=360°﹣(∠BMH+∠HND).又∵∠AMH+∠HNC=∠MHI+∠NHI=∠MHN,∴∠BMH+∠HND=360°﹣∠MHN.即2∠MEN+∠MHN=360°.故答案为:2∠MEN+∠MHN=360°.②:由①的结论得2∠MEN+∠MHN=360°,∵∠H=∠MHN=140°,∴2∠MEN=360°﹣140°=220°.∴∠MEN=110°.过点H作HT∥MP.如答图2∵MP∥NQ,∴HT∥NQ.∴∠ENQ+∠ENH+∠NHT=180°(两直线平行,同旁内角互补).∵MP平分∠AMH,∴∠PMH=∠AMH=(180°﹣∠BMH).∵∠NHT=∠MHN﹣∠MHT=140°﹣∠PMH.∴∠ENQ+∠ENH+140°﹣(180°﹣∠BMH)=180°.∵∠ENH=∠HND.∴∠ENQ+∠HND+140°﹣90°+∠BMH=180°.∴∠ENQ+(HND+∠BMH)=130°.∴∠ENQ+∠MEN=130°.∴∠ENQ=130°﹣110°=20°.【点睛】本题考查了平行线的性质,角平分线的性质,邻补角,等量代换,角之间的数量关系运算,辅助线的作法,正确作出辅助线是解题的关键,本题综合性较强.5.(1)90°;(2)∠PFC=∠PEA+∠P;(3)∠G=α【分析】(1)根据平行线的性质与判定可求解;(2)过P点作PN∥AB,则PN∥CD,可得∠FPN=∠PEA+∠FPE,进而可得∠PFC=∠PEA+∠FPE,即可求解;(3)令AB与PF交点为O,连接EF,根据三角形的内角和定理可得∠GEF+∠GFE=∠PEA+∠PFC+∠OEF+∠OFE,由(2)得∠PEA=∠PFC-α,由∠OFE+∠OEF=180°-∠FOE=180°-∠PFC可求解.【详解】解:(1)如图1,过点P作PM∥AB,∴∠1=∠AEP.又∠AEP=40°,∴∠1=40°.∵AB∥CD,∴PM∥CD,∴∠2+∠PFD=180°.∵∠PFD=130°,∴∠2=180°-130°=50°.∴∠1+∠2=40°+50°=90°.即∠EPF=90°.(2)∠PFC=∠PEA+∠P.理由:过P点作PN∥AB,则PN∥CD,∴∠PEA=∠NPE,∵∠FPN=∠NPE+∠FPE,∴∠FPN=∠PEA+∠FPE,∵PN∥CD,∴∠FPN=∠PFC,∴∠PFC=∠PEA+∠FPE,即∠PFC=∠PEA+∠P;(3)令AB与PF交点为O,连接EF,如图3.在△GFE中,∠G=180°-(∠GFE+∠GEF),∵∠GEF=∠PEA+∠OEF,∠GFE=∠PFC+∠OFE,∴∠GEF+∠GFE=∠PEA+∠PFC+∠OEF+∠OFE,∵由(2)知∠PFC=∠PEA+∠P,∴∠PEA=∠PFC-α,∵∠OFE+∠OEF=180°-∠FOE=180°-∠PFC,∴∠GEF+∠GFE=(∠PFC−α)+∠PFC+180°−∠PFC=180°−α,∴∠G=180°−(∠GEF+∠GFE)=180°−180°+α=α.【点睛】本题主要考查平行线的性质与判定,灵活运用平行线的性质与判定是解题的关键.6.(1)49°,(2)44°,(3)∠OPQ=∠ORQ【分析】(1)根据∠OPA=∠QPB.可求出∠OPA的度数;(2)由∠AOP=43°,∠BQP=49°可求出∠OPQ的度数,转化为(1)来解决问题;(3)由(2)推理可知:∠OPQ=∠AOP+∠BQP,∠ORQ=∠DOR+∠RQC,从而∠OPQ=∠ORQ.【详解】解:(1)∵∠OPA=∠QPB,∠OPQ=82°,∴∠OPA=(180°-∠OPQ)×=(180°-82°)×=49°,(2)作PC∥m,∵m∥n,∴m∥PC∥n,∴∠AOP=∠OPC=43°,∠BQP=∠QPC=49°,∴∠OPQ=∠OPC+∠QPC=43°+49°=92°,∴∠OPA=(180°-∠OPQ)×=(180°-92°)×44°,(3)∠OPQ=∠ORQ.理由如下:由(2)可知:∠OPQ=∠AOP+∠BQP,∠ORQ=∠DOR+∠RQC,∵入射光线与平面镜的夹角等于反射光线与平面镜的夹角,∴∠AOP=∠DOR,∠BQP=∠RQC,∴∠OPQ=∠ORQ.【点睛】本题主要考查了平行线的性质和入射角等于反射角的规定,解决本题的关键是注意问题的设置环环相扣、前为后用的设置目的.7.(1)两;(2)125,343,729,9;(3)3,39;(4)47【分析】(1)根据夹逼法和立方根的定义进行解答;(2)先分别求得1至9中奇数的立方,然后根据末位数字是几进行判断即可;(3)先利用(2)中的方法判断出个数数字,然后再利用夹逼法判断出十位数字即可;(4)利用(3)中的方法确定出个位数字和十位数字即可.【详解】(1)∵1000<59319<1000000,∴59319的立方根是两位数;(2)∵125,343,729,∴59319的个位数字是9,则59319的立方根的个位数字是9;(3)∵,且59319的立方根是两位数,∴59319的立方根的十位数字是3,又∵59319的立方根的个位数字是9,∴59319的立方根是39;(4)∵1000<103823<1000000,∴103823的立方根是两位数;∵125,343,729,∴103823的个位数字是3,则103823的立方根的个位数字是7;∵,且103823的立方根是两位数,∴103823的立方根的十位数字是4,又∵103823的立方根的个位数字是7,∴103823的立方根是47.【点睛】考查了立方根的概念和求法,解题关键是理解一个数的立方的个位数就是这个数的个位数的立方的个位数.8.(1);(2)±3.【分析】(1)由于4<7<9,可求的整数部分,进一步得出的小数部分;(2)先求出的整数部分和小数部分,再代入代数式进行计算即可.【详解】解:(1)∵4<7<9,∴,即,∴,∴的整数部分为2,∴的小数部分为;(2)∵是的整数部分,是的小数部分,9<10<16,∴,即,∴,∴的整数部分为3,的小数部分为,即有,,∴9的平方根为±3.∴的平方根为±3.【点睛】本题考查了估算无理数的大小:利用完全平方数和算术平方根对无理数的大小进行估算.9.(1),-2;(2)()4,(﹣2)8;(3);(4).【分析】(1)分别按公式进行计算即可;(2)把除法化为乘法,第一个数不变,从第二个数开始依次变为倒数,由此分别得出结果;(3)结果前两个数相除为1,第三个数及后面的数变为,则aⓝ=a×()n-1;(4)将第二问的规律代入计算,注意运算顺序.【详解】解:(1)2③=2÷2÷2=,(﹣)③=﹣÷(﹣)÷(﹣)=﹣2;(2)5⑥=5×××××=()4,同理得;(﹣)⑩=(﹣2)8;(3)aⓝ=a×××…×;(4)(-3)8×(-3)⑨-(﹣)9×(﹣)⑧=(-3)8×()7-(﹣)9×(-2)6=-3-(-)3=-3+=.【点睛】本题是有理数的混合运算,也是一个新定义的理解与运用;一方面考查了有理数的乘除法及乘方运算,另一方面也考查了学生的阅读理解能力;注意:负数的奇数次方为负数,负数的偶数次方为正数,同时也要注意分数的乘方要加括号,对新定义,其实就是多个数的除法运算,要注意运算顺序.10.(1)两;右;一;(2)12.25;0.3873;(3)被开方数的小数点向右(左)移三位,其立方根的小数点向右(左)移动一位;(4)-0.01【分析】(1)观察已知等式,得到一般性规律,写出即可;(2)利用得出的规律计算即可得到结果;(3)归纳总结得到规律,写出即可;(4)利用得出的规律计算即可得到结果.【详解】解:(1),,,……,,,……由此可见,被开方数的小数点每向右移动两位,其算术平方根的小数点向右移动一位.故答案为:两;右;一;(2)已知,,则;;故答案为:12.25;0.3873;(3),,,……小数点的变化规律是:被开方数的小数点向右(左)移三位,其立方根的小数点向右(左)移动一位;(4)∵,,∴,∴,∴y=-0.01.【点睛】此题考查了立方根,以及算术平方根,弄清题中的规律是解本题的关键.11.(1);;(2)①2;3;6.②这个乘客花费7元乘坐的地铁行驶的路程范围为:大于公里小于等于32公里.【分析】(1)根据题意,确定实数左侧第一个整数点所对应的数即得;(2)①根据表格确定乘坐里程的对应段,然后将乘坐里程分段计费并累加即得;②根据表格将每段的费用从左至右依次累加直至费用为7元,进而确定7元乘坐的具体里程即得.【详解】(1)∵∴∵∴故答案为:;.(2)①∵∴3.07公里需要2元∵∴7.93公里所需费用分为两段即:前4公里2元,后3.93公里1元∴7.93公里所需费用为:(元)∵∴公里所需费用分为三段计费即:前4公里2元,4至12公里2元,12公里至19.17公里2元;∴公里所需费用为:(元)故答案为:2;3;6.②由题意得:乘坐24公里所需费用分为三段:前4公里2元,4至12公里2元,12公里至24公里2元;∴乘坐24公里所需费用为:(元)∵由表格可知:乘坐24公里以上的部分,每一元可以坐8公里∴7元可以乘坐的地铁最大里程为:(公里)∴这个乘客花费7元乘坐的地铁行驶的路程范围为:大于公里小于等于32公里答:这个乘客花费7元乘坐的地铁行驶的路程范围为:大于公里小于等于32公里.【点睛】本题是阅读材料题,考查了实数的实际应用,根据材料中的新定义举一反三并挖掘材料中深层次含义是解题关键.12.(1);(2)2;(3)不是;(4)(6,)【分析】(1)根据“白马有理数对”的定义,把数对分别代入计算即可判断;(2)根据“白马有理数对”的定义,构建方程即可解决问题;(3)根据“白马有理数对”的定义即可判断;(4)根据“白马有理数对”的定义即可解决问题.【详解】(1)∵-2+1=-1,而-2×1-1=-3,∴-2+1-3,∴(-2,1)不是“白马有理数对”,∵5+=,5×-1=,∴5+=5×-1,∴是“白马有理数对”,故答案为:;(2)若是“白马有理数对”,则a+3=3a-1,解得:a=2,故答案为:2;(3)若是“白马有理数对”,则m+n=mn-1,那么-n+(-m)=-(m+n)=-(mn-1)=-mn+1,∵-mn+1mn-1∴(-n,-m)不是“白马有理数对”,故答案为:不是;(4)取m=6,则6+x=6x-1,∴x=,∴(6,)是“白马有理数对”,故答案为:(6,).【点睛】本题考查了“白马有理数对”的定义,有理数的加减运算,一次方程的列式求解,理解“白马有理数对”的定义是解题的关键.13.(1);(2);(3)不变,值为2.【分析】(1)根据,即可得出a,b的值,再根据平移的性质得出,因为点C在y轴负半轴,即可得出点C的坐标;(2)过点D分别作DM⊥x轴于点M,DN⊥y轴于点N,连接OD,在中用等面积法即可求出m和n的关系式;(3)分别过点E,F作EP∥OA,FQ∥OA分别交y轴于点P,点Q,根据平行线的性质,得出进而得到的值.【详解】(1)解:∵,∴∴∵且C在y轴负半轴上,∴,故填:;(2)如图1,过点D分别作DM⊥x轴于点M,DN⊥y轴于点N,连接OD.∵AB⊥x轴于点B,且点A,D,C三点的坐标分别为:∴,∴,又∵S△BOC=S△BOD+S△COD=OB×MD+OC×ND,∴;(3)解:的值不变,值为2.理由如下:如图所示,分别过点E,F作EP∥OA,FQ∥OA分别交y轴于点P,点Q,∵线段OC是由线段AB平移得到,∴BC∥OA,又∵EP∥OA,∴EP∥BC,∴∠GCF=∠PEC,∵EP∥OA,∴∠AOE=∠OEP,∴∠OEC=∠OEP+∠PEC=∠AOE+∠GCF,同理:∠OFC=∠AOF+∠GCF,又∵∠AOB=∠BOG,∴∠OFC=2∠AOE+∠GCF,∴.【点睛】本题主要考查了非负数的性质,坐标与图形,平行线的判定与性质,以及平移的性质,解决问题的关键是作辅助线,运用等面积法,角的和差关系以及平行线的性质进行求解.14.(1)∠AEP+∠PFC=∠EPF;(2)∠AEP+∠EPF+∠PFC=360°;(3)①150°或30;②∠EPF+2∠EQF=360°或∠EPF=2∠EQF【分析】(1)由于点是平行线,之间有一动点,因此需要对点的位置进行分类讨论:如图1,当点在的左侧时,,,满足数量关系为:;(2)当点在的右侧时,,,满足数量关系为:;(3)①若当点在的左侧时,;当点在的右侧时,可求得;②结合①可得,由,得出;可得,由,得出.【详解】解:(1)如图1,过点作,,,,,,;(2)如图2,当点在的右侧时,,,满足数量关系为:;过点作,,,,,,;(3)①如图3,若当点在的左侧时,,,,分别平分和,,,;如图4,当点在的右侧时,,,;故答案为:或30;②由①可知:,;,.综合以上可得与的数量关系为:或.【点睛】本题主要考查了平行线的性质,平行公理和及推论等知识点,作辅助线后能求出各个角的度数,是解此题的关键.15.(1)(-2,0);(-3,0);(2)z=x+y.证明见解析.【分析】(1)依据平移的性质可知BC∥x轴,BC=AE=3,然后依据点A和点C的坐标可得到点E和点D的坐标;(2过点P作PF∥BC交AB于点F,则PF∥AD,然后依据平行线的性质可得到∠BPF=∠CBP=x°,∠APF=∠DAP=y°,最后,再依据角的和差关系进行解答即可.【详解】解:(1)∵将三角形OAB沿x轴负方向平移,∴BC∥x轴,BC=AE=3.∵C(-3,2),A(1,0),∴E(-2,0),D(-3,0).故答案为:(-2,0);(-3,0).(2)z=x+y.证明如下:如图,过点P作PF∥BC交AB于点F,则PF∥AD,∴∠BPF=∠CBP=x°,∠APF=∠DAP=y°,∴∠BPA=∠BPF+∠APF=x°+y°=z°,∴z=x+y.【点睛】此题是几何变换综合题,主要考查了点的坐标的特点,平移得性质,平面坐标系中点的坐标和距离的关系,解本题的关键是由线段和部分点的坐标,得出其它点的坐标.16.(1)①B;②7或;(2)或或;(3)n≥.【分析】(1)①直接根据新定义的概念即可求出答案;②根据新定义的概念列出绝对值方程即可求解;(2)设P点所表示的数为4-2t,再根据新定义的概念列出方程即可求解;(3)分,,三种情况分别表示出PN的值,再根据PN的范围列出不等式组即可求解.【详解】(1)①由数轴可知,点A表示的数为-1,点B表示的数为2,点C表示的数为1,点D表示的数为0,∴AD=1,AC=2∴AD=AC∴点A不是的2倍点∴BD=2,BC=1∴BD=2BC∴点B是的2倍点故答案为:B;②若点C是点的3倍点∴CM=3CN设点C表示的数为x∴CM=,CN=∴=3即或解得x=7或x=∴数7或表示的点是的3倍点.故答案为:7或;(2)设点P表示的数为4-2t,∴PM=,PN=2t∵若恰好是和两点的倍点,∴当点P是的n倍点∴PM=nPN∴=n×2t即6-2t=2nt或6-2t=-2nt解得或∵n>1∴∴当点P是的n倍点∴PN=nPM∴2t=n×即2t=n×或-2t=n×解得或∴符合条件的t值有或或;(3)∵PN=2t∴当时,PN=当时,PN=,当时,PN=∵点P均在点N的可视距离之内∴PN≤30∴解得n≥∴n的取值范围为n≥.【点睛】此题主要考查主要方程与不等式组的应用,解题的关键是根据新定义概念列出方程或不等式求解.17.(1),;(2)或;(3)【分析】(1)根据非负数和为0,则每一个非负数都是0,即可求出a,b的值;(2)设直线AB与直线x=1交于点N,可得N(1,5),根据S△ABM=S△AMN−S△BMN,即可表示出S△ABM,从而列出m的方程.(3)根据题意知,临界状态是点P落在OA和AB上,分别求出此时t的值,即可得出范围.【详解】(1)∵,,∴,解得:,(2)设直线与直线交于,设∵a=−4,b=4,∴A(−4,0),B(0,4),设直线AB的函数解析式为:y=kx+b,代入得,解得∴直线AB的函数解析式为:y=x+4,代入x=1得∵∴=×5×|5−m|−×1×|5−m|=2|5−m|,∵∴∴或解得:或,(3)当点P在OA边上时,则2t=2,∴t=1,当点P在AB边上时,如图,过点P作PKx轴,AK⊥x轴交于K,则KP'=3−t,KA'=2t−2,∴3−t=2t−2,∴综上所述:.【点睛】本题主要考查了平移的性质、一般三角形面积的和差表示、以及非负数的性质等知识点,第(2)问中用绝对值来表示动点构成的线段长度是正确解题的关键.18.(1)①1,4;3,0;2,﹣4;②2;(2)见解析;(3)t=1.2时,P(0.6,0),t=2时,P(﹣1,0).【分析】(1)①利用非负数的性质求出a,b的值,可得结论.②利用三角形面积公式求解即可.(2)连接DH,根据△ODH的面积+△ADH的面积=△OAH的面积,构建关系式,可得结论.(3)分两种情形:①当点P在线段OB上,②当点P在BO的延长线上时,分别利用面积关系,构建方程,可得结论.【详解】(1)解:①∵,又∵≥0,(b﹣3)2≥0,∴a=4,b=3,∴A(1,4),B(3,0),∵B是由A平移得到的,∴A向右平移2个单位,向下平移4个单位得到B,∴点C是由点O向右平移2个单位,向下平移4个单位得到的,∴C(2,﹣4),故答案为:1,4;3,0;2,﹣4.②△AOH的面积=×1×4=2,故答案为:2.(2)证明:如图,连接DH.∵△ODH的面积+△ADH的面积=△OAH的面积,∴×1×n+×4×(1﹣m)=2,∴4m=n.(3)解:①当点P在线段OB上,由三角形AOP与三角形COQ的面积相等得:OP·yA=OQ·xC,∴×(3﹣2t)×4=×2t,解得t=1.2.此时P(0.6,0).②当点P在BO的延长线上时,由三角形AOP与三角形COQ的面积相等得:OP·yA=OQ·xC,×(2t﹣3)×4=×2×t,解得t=2,此时P(﹣1,0),综上所述,t=1.2时,P(0.6,0),t=2时,P(﹣1,0).【点睛】本题考查坐标与图形变化-平移,非负数的性质,三角形的面积等知识,解题的关键是学会利用参数构建方程解决问题.19.(1)A、B两种品牌电风扇每台的进价分别是100元、150元;(2)为能在销售完这两种电风扇后获得最大的利润,该商店应采用购进A种品牌的电风扇7台,购进B种品牌的电风扇2台.【分析】(1)设A种品牌电风扇每台进价元,B种品牌电风扇每台进价元,根据题意即可列出关于x、y的二元一次方程组,解出x、y即可.(2)设购进A品牌电风扇台,B品牌电风扇台,根据题意可列等式,由a和b都为整数即可求出a和b的值的几种可能,然后分别算出每一种情况的利润进行比较即可.【详解】(1)设A、B两种品牌电风扇每台的进价分别是x元、y元,由题意得:,解得:,答:A、B两种品牌电风扇每台的进价分别是100元、150元;(2)设购进A种品牌的电风扇a台,购进B种品牌的电风扇b台,由题意得:100a+150b=1000,其正整数解为:或或,当a=1,b=6时,利润=80×1+100×6=680(元),当a=4,b=4时,利润=80×4+100×4=720(元),当a=7,b=2时,利润=80×7+100×2=760(元),∵680<720<760,∴当a=7,b=2时,利润最大,答:为能在销售完这两种电风扇后获得最大的利润,该商店应采用购进A种品牌的电风扇7台,购进B种品牌的电风扇2台.【点睛】本题主要考查了二元一次方程组的实际应用,根据题意找出等量关系列出等式是解答本题的关键.20.(1);(2)“小勇同学的解答”错误,诊断分析和评价见解析【分析】(1)由两种方法分别得出2=5-5k,求解即可;(2)从二元一次方程的解和二元一次方程组的解的概念进行诊断分析,再从创新的角度进行评价即可.【详解】解:(1)方法一:②×2得:4x+6y=6-4k③,由③-①得:x+y=5-5k,∵x+y=2,∴2=5-5k,解得:k=,方法二:由①-②得:x+2y=3k-2③,由②-③得:x+y=5-5k,∵x+y=2,∴2=5-5k,解得:k=;(2)“小勇同学的解答”错误,理由如下:∵令3x=k,5y=1,求出的x、y的值只是方程①的一个解,而方程①有无数个解,根据方程组的解的概念,仅有方程①或方程②的某一个解中的x、y求出的k值不一定适合方程组中的另一个方程;只有当方程①、②取公共解时,k和x、y之间对应的数量关系才能成立,这时,求得的k=才是正确答案;另一方面,小勇的解答虽然错误,但他的思维给我们有创新的感觉,也让我们巩固加深了对方程组解的概念的连接,同时启发我们平时在学习中,要善于多角度去探索问题,寻求新颖的解题方法.【点睛】本题考查了二元一次方程组的应用、二元一次方程的解、一元一次方程的解法以及整体思想的应用等知识;熟练掌握二元一次方程组的解法,由整体思想得出2=5-5k是解题的关键.21.(1)-1;1;(2)30元;(3)-11【分析】(1)①+②,可得出的值,①-②,得的值;(2)设购买1支铅笔、1块橡皮、1本日记本分别使用元、元、元,根据“买20支铅笔、3块橡皮、2本日记本共需32元,买39支铅笔、5块橡皮、3本日记木共需58元”列出方程组,再根据方程组的特征求出,进一步可求出;(3)根据新定义,将数值代入新定义里,列方程组求解即可得出答案.【详解】(1)解:①+②,得;①-②,得;故答案为:-1,1;(2)设购买1支铅笔、1块橡皮、1本日记本分别使用元、元、元,根据题意,得:①×②-②得∴(元)答:5本日记本共需30元.(3)①②得∴.【点睛】本题考查了三元一次方程组的应用,熟练读懂题干中的“整体思想”是解题的关键.22.(1)和的度数分别为和;(2)见解析;(3)【分析】根据,解二元一次方程组,求出和的度数;根据平行线判定定理,判定;由“是的平分线”:,再根据平行线判定定理,求出的度数.【详解】解:(1)①②,得,,代入①得和的度数分别为和.(2),(3)是的平分线,【点睛】本题运用二元一次方程组给出已知条件,熟练掌握二元一次方程组的解法以及平行线相关定理是解题的关键.23.(1)∠C+∠BAD=90°,理由见解析;(2)9°【分析】(1)先过点B作BG∥DM,根据同角的余角相等,得出∠ABD=∠CBG,再根据平行线的性质,得出∠C=∠CBG,即可得到∠ABD=∠C,可得∠C+∠BAD=90°;(2)先过点B作BG∥DM,根据角平分线的定义,得出∠ABF=∠GBF,再设∠DBE=α,∠ABF=β,根据∠CBF+∠BFC+∠BCF=180°,可得(2α+β)+5α+(5α+β)=180°,根据AB⊥BC,可得β+β+2α=90°,最后解方程组即可得到∠ABE=9°.【详解】解:(1)如图2,过点B作BG∥DM,∵BD⊥AM,∴∠ABD+∠BAD=90°,DB⊥BG,即∠ABD+∠ABG=90°,又∵AB⊥BC,∴∠CBG+∠ABG=90°,∴∠ABD=∠CBG,∵AM∥CN,BG∥AM,∴CN∥BG,∴∠C=∠CBG,∴∠ABD=∠C,∴∠C+∠BAD=90°;(2)如图3,过点B作BG∥DM,BF平分∠DBC,BE平分∠ABD,∴∠DBF=∠CBF,∠DBE=∠ABE,由(1)可得∠ABD=∠CBG,∴∠ABF=∠GBF,设∠DBE=α,∠ABF=β,则∠ABE=α,∠ABD=2α=∠CBG,∠GBF=β=∠AFB,∠BFC=5∠DBE=5α,∴∠AFC=5α+β,∵∠AFC+∠NCF=180°,∠FCB+∠NCF=180°,∴∠FCB=∠AFC=5α+β,△BCF中,由∠CBF+∠BFC+∠BCF=180°,可得(2α+β)+5α+(5α+β)=180°,①由AB⊥BC,可得β+β+2α=90°,②由①②联立方程组,解得α=9°,∴∠ABE=9°.【点睛】本题主要考查了平行线的性质的运用,解决问题的关键是作平行线构造内错角,运用等角的余角(补角)相等进行推导.余角和补角计算的应用,常常与等式的性质、等量代换相关联.解题时注意方程思想的运用.24.(1)该店三月份售出A种手机24部,B种手机10部;(2)共有5种进货方案,分别是A种手机21部,B种手机19部;A种手机22部,B种手机18部;A种手机23部,B种手机17部;A种手机24部,B种手机16部;A种手机25部,B种手机15部【分析】(1)设该店三月份售出A种手机x部,B种手机y部,由“三月份销售A、B两种手机共34部,且销售A种手机的利润恰好是销售B种手机利润的2倍”列出方程组,可求解;(2)设A种手机a部,B种手机(40﹣a)部,由“购进B种手机数不低于A种手机数的,用于购买这两种手机的资金低于140000元”列出不等式组,即可求解.【详解】解:(1)设该店三月份售出A种手机x部,B种手机y部,由题意可得:,解得:,答:该店三月份售出A种手机24部,B种手机10部;(2)设A种手机a部,B种手机(40﹣a)部,由题意可得,解得:20<a≤25,∵a为整数,∴a=21,22,23,24,25,∴共有5种进货方案,分别是A种手机21部,B种手机19部;A种手机22部,B种手机18部;A种手机23部,B种手机17部;A种手机24部,B种手机16部;A种手机25部,B种手机15部.【点睛】本题考查了一元一次不等式组解实际问题的运用,二元一次方程组解实际问题的运用,找准等量关系,正确列出二元一次方程组是解题的关键.25.(1)4,﹣7;(2)3≤x<4;(3);(4)或或或【分

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论