北京市东城区北京第六十六中学2026届高二数学第一学期期末质量检测模拟试题含解析_第1页
北京市东城区北京第六十六中学2026届高二数学第一学期期末质量检测模拟试题含解析_第2页
北京市东城区北京第六十六中学2026届高二数学第一学期期末质量检测模拟试题含解析_第3页
北京市东城区北京第六十六中学2026届高二数学第一学期期末质量检测模拟试题含解析_第4页
北京市东城区北京第六十六中学2026届高二数学第一学期期末质量检测模拟试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

北京市东城区北京第六十六中学2026届高二数学第一学期期末质量检测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知一组数据为:2,4,6,8,这4个数的方差为()A.4 B.5C.6 D.72.今天是星期四,经过天后是星期()A.三 B.四C.五 D.六3.已知命题对任意,总有;是方程的根则下列命题为真命题的是A. B.C. D.4.设直线,.若,则的值为()A.或 B.或C. D.5.为发挥我市“示范性高中”的辐射带动作用,促进教育的均衡发展,共享优质教育资源.现分派我市“示范性高中”的5名教师到,,三所薄弱学校支教,开展送教下乡活动,每所学校至少分派一人,其中教师甲不能到学校,则不同分派方案的种数是()A.150 B.136C.124 D.1006.在数列中,,则()A. B.C.2 D.17.已知函数,则()A. B.0C. D.18.若x,y满足约束条件,则的最大值为()A.2 B.3C.4 D.59.已知等差数列中的、是函数的两个不同的极值点,则的值为()A. B.1C.2 D.310.已知抛物线C:,则过抛物线C的焦点,弦长为整数且不超过2022的直线的条数是()A.4037 B.4044C.2019 D.202211.《张邱建算经》记载:今有女子不善织布,逐日织布同数递减,初日织五尺,末一日织一尺,计织三十日,问第11日到第20日这10日共织布()A.30尺 B.40尺C.6尺 D.60尺12.在正三棱锥S−ABC中,M、N分别是棱SC、BC的中点,且,若侧棱,则正三棱锥S−ABC外接球的表面积是()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知在时有极值0,则的值为____14.若直线与直线平行,则________.15.如图,在直三棱柱中,,为中点,则平面与平面夹角的正切值为___________.16.圆被直线所截得弦的最短长度为___________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知椭圆的左、右焦点分别为,,且椭圆过点,离心率,为坐标原点,过且不平行于坐标轴的动直线与有两个交点,,线段的中点为.(1)求的标准方程;(2)记直线斜率为,直线的斜率为,证明:为定值;(3)轴上是否存在点,使得为等边三角形?若存在,求出点的坐标;若不存在,请说明理由.18.(12分)已知等差数列的前项和满足,.(1)求的通项公式;(2)设,求数列的前n项和.19.(12分)已知数列的前n项和为,,,其中.(1)记,求证:是等比数列;(2)设,数列的前n项和为,求证:.20.(12分)在平面直角坐标系中,曲线的参数方程为(为参数),以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为.(1)求曲线的普通方程和曲线的直角坐标方程;(2)若与相交于A、两点,设,求.21.(12分)已知数列的前项和为,且.(1)求的通项公式;(2)求数列的前项和.22.(10分)如图,直三棱柱中,底面是边长为2的等边三角形,D为棱AC中点.(1)证明:AB1//平面;(2)若面B1BC1与面BC1D的夹角余弦值为,求.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】根据数据的平均数和方差的计算公式,准确计算,即可求解.【详解】由平均数的计算公式,可得,所以这4个数的方差为故选:B.2、C【解析】求出二项式定理的通项公式,得到除以7余数是1,然后利用周期性进行计算即可【详解】解:一个星期的周期是7,则,即除以7余数是1,即今天是星期四,经过天后是星期五,故选:3、A【解析】由绝对值的意义可知命题p为真命题;由于,所以命题q为假命题;因此为假命题,为真命题,“且”字联结的命题只有当两命题都真时才是真命题,所以答案选A4、A【解析】由两直线垂直可得出关于实数的等式,即可解得实数的值.【详解】因为,则,解得或.故选:A.5、D【解析】对甲所在组的人数分类讨论即得解.【详解】当甲一个人去一个学校时,有种;当甲所在的学校有两个老师时,有种;当甲所在的学校有三个老师时,有种;所以共有28+48+24=100种.故选:D【点睛】方法点睛:排列组合常用方法有:简单问题直接法、小数问题列举法、相邻问题捆绑法、不相邻问题插空法、至少问题间接法、复杂问题分类法、等概率问题缩倍法.要根据已知条件灵活选择方法求解.6、A【解析】利用条件可得数列为周期数列,再借助周期性计算得解.【详解】∵∴,,所以数列是以3为周期的周期数列,∴,故选:A.7、B【解析】先求导,再代入求值.详解】,所以.故选:B8、C【解析】作出不等式组对应的可行域,再利用数形结合分析求解.【详解】解:作出不等式组对应的可行域为如图所示的阴影部分区域,由得,它表示斜率为纵截距为的直线系,当直线平移到点时,纵截距最大,最大.联立直线方程得得.所以.故选:C9、C【解析】对求导,由题设及根与系数关系可得,再根据等差中项的性质求,最后应用对数运算求值即可.【详解】由题设,,由、是的两个不同的极值点,所以,又是等差数列,所以,即,故.故选:C10、A【解析】根据已知条件,结合抛物线的性质,先求出过焦点的最短弦长,再结合抛物线的对称性,即可求解【详解】∵抛物线C:,即,由抛物线的性质可得,过抛物线焦点中,长度最短的为垂直于y轴的那条弦,则过抛物线C的焦点,长度最短的弦的长为,由抛物线的对称性可得,弦长在5到2022之间的有共有条,故弦长为整数且不超过2022的直线的条数是故选:A11、A【解析】由题意可知,每日的织布数构成等差数列,由等差数列的求和公式得解.【详解】由题女子织布数成等差数列,设第日织布为,有,所以,故选:A.12、A【解析】由题意推出平面,即平面,,将此三棱锥补成正方体,则它们有相同的外接球,正方体的对角线就是球的直径,求出直径即可求出球的体积【详解】∵,分别为棱,的中点,∴,∵三棱锥为正棱锥,作平面,所以是底面正三角的中心,连接并延长交与点,∵底面是正三角形,,平面∴,,∵,平面,平面,∴平面,∵平面,∴,∴,又∵,而,且,平面,∴平面,∴平面,∴,因为S−ABC是正三棱锥。所以,以,,为从同一定点出发的正方体三条棱,将此三棱锥补成以正方体,则它们有相同的外接球,正方体的体对角线就是球的直径,,所以.故选:A.二、填空题:本题共4小题,每小题5分,共20分。13、11【解析】由题知,且,所以,得或,①当时,,此时,,所以函数单调递增无极值,舍去②当时,,此时,是函数的极值点,符合题意,∴14、【解析】根据直线平行的充要条件即可求出【详解】当时,显然两直线不平行,所以依题有,解得故答案为:15、【解析】由条件可得均为等腰直角三角形,从而,先证明平面,从而,即得到为平面与平面夹角的平面角,从而可求解.【详解】由,则,则在直三棱柱中,平面,又平面,则又,所以平面平面,所以由由条件可得均为等腰直角三角形,则所以,即,由所以平面,又平面所以,即为平面与平面夹角的平面角.在直角中,所以故答案为:16、【解析】首先确定直线所过定点;由圆的方程可确定圆心和半径,进而求得圆心到的距离,由此可知所求最短长度为.【详解】由得:,直线恒过点;,在圆内;又圆的圆心为,半径,圆心到点的距离,所截得弦的最短长度为.故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)证明见解析;(3)不存在,理由见解析.【解析】(1)由椭圆所过点及离心率,列方程组,再求解即得;(2)设出点A,B坐标并列出它们满足的关系,利用点差法即可作答;(3)设直线的方程,联立直线与椭圆的方程,借助韦达定理求得,,再结合为等边三角形的条件即可作答.【详解】(1)显然,半焦距c有,即,则,所以椭圆的标准方程为;(2)设,,,,由(1)知,,两式相减得,即,而弦的中点,则有,所以;(3)假定存在符合要求的点P,由(1)知,设直线的方程为,由得:,则,,于是得,从而得点,,因为等边三角形,即有,,因此,,,从而得,整理得,无解,所以在y轴上不存在点,使得为等边三角形.18、(1)(2)【解析】(1)根据已知求出首项和公差即可求出;(2)利用裂项相消法求解即可.【小问1详解】设等差数列的公差为,因为,所以,化简得,解得,所以【小问2详解】由(1)可知,所以,所以.19、(1)证明见解析;(2)证明见解析.【解析】(1)应用的关系,结合构造法可得,根据已知条件及等比数列的定义即可证结论.(2)由(1)得,再应用错位相减法求,即可证结论.【小问1详解】证明:对任意的,,,时,,解得,时,因为,,两式相减可得:,即有,∴,又,则,因为,,所以,对任意的,,所以,因此,是首项和公比均为3的等比数列【小问2详解】由(1)得:,则,,,两式相减得:,化简可得:,又,∴.20、(1)曲线的普通方程为;曲线的直角坐标方程为(2)【解析】(1)直接利用转换关系式把参数方程和极坐标方程转化为直角坐标方程;(2)易得满足直线的方程,转化为参数方程,代入曲线的普通方程,再利用韦达定理结合弦长公式即可得出答案.【小问1详解】解:曲线的参数方程为(为参数),转化为普通方程为,曲线的极坐标方程为,即,根据,转化为直角坐标方程为;【小问2详解】解:因为满足直线的方程,将转化为参数方程为(为参数),代入,得,设A、两点的参数分别为,则,所以.21、(1);(2).【解析】(1)利用,结合已知条件,即可容易求得通项公式;(2)根据(1)中所求,对数列进行裂项求和,即可求得.【小问1详解】当时,.当时,,因为当时,,所以.【小问2详解】因为,所以,故数列的前项和.22、(1)证明见解析(2)【解析】(1)连接,使,连接

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论