高中物理稳恒电流的技巧及练习题及练习题_第1页
高中物理稳恒电流的技巧及练习题及练习题_第2页
高中物理稳恒电流的技巧及练习题及练习题_第3页
高中物理稳恒电流的技巧及练习题及练习题_第4页
高中物理稳恒电流的技巧及练习题及练习题_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

高中物理稳恒电流的技巧及练习题及练习题一、稳恒电流专项训练1.一电路如图所示,电源电动势E=28v,内阻r=2Ω,电阻R1=4Ω,R2=8Ω,R3=4Ω,C为平行板电容器,其电容C=3.0pF,虚线到两极板距离相等,极板长L=0.20m,两极板的间距d=1.0×10-2m.(1)闭合开关S稳定后,求电容器所带的电荷量为多少?(2)当开关S闭合后,有一未知的、待研究的带电粒子沿虚线方向以v0=2.0m/s的初速度射入MN的电场中,已知该带电粒子刚好从极板的右侧下边缘穿出电场,求该带电粒子的比荷q/m(不计粒子的重力,M、N板之间的电场看作匀强电场,g=10m/s2)【答案】(1)(2)【解析】【分析】【详解】(1)闭合开关S稳定后,电路的电流:;电容器两端电压:;电容器带电量:(2)粒子在电场中做类平抛运动,则:联立解得2.把一只“1.5V,0.3A”的小灯泡接到6V的电源上,为使小灯泡正常发光,需要串联还是并联一个多大电阻?【答案】串联一个的电阻【解析】【分析】【详解】要使灯泡正常发光则回路中电流为0.3A,故回路中的总电阻为灯泡的电阻为由于电源电压大于灯泡额定电压,故需要串联一个电阻分压,阻值为3.在如图所示的电路中,电源电动势E=3V,内阻r=0.5Ω,定值电阻R1=9Ω,R2=5.5Ω,电键S断开.①求流过电阻R1的电流;②求电阻R1消耗的电功率;③将S闭合时,流过电阻R1的电流大小如何变化?【答案】(1)0.2A;(2)0.36W;(3)变大【解析】试题分析:(1)电键S断开时,根据闭合电路的欧姆定律求出电流;(2)根据求出消耗的电功率;(3)将S闭合时回路中的总电阻减小,根据闭合电路的欧姆定律分析电流的变化.(1)电键S断开时,根据闭合电路的欧姆定律得:,解得:I=0.2A(2)根据,得(3)将S闭合时,被短接,回路中的总电阻减小,根据闭合电路的欧姆定律:,可知电流变大,即流过电阻的电流变大【点睛】本题主要考查了闭合电路的欧姆定律,解决本题的关键就是要知道闭合电路的欧姆定律的表达式,并且知道回路中的电阻变化了,根据闭合电路的欧姆定律可以判断电流的变化.4.在图所示的电路中,电源电压U恒定不变,当S闭合时R1消耗的电功率为9W,当S断开时R1消耗的电功率为4W,求:(1)电阻R1与R2的比值是多大?(2)S断开时,电阻R2消耗的电功率是多少?(3)S闭合与断开时,流过电阻R1的电流之比是多少?【答案】2∶1,2W,3∶2【解析】【分析】【详解】(1)当S闭合时R1消耗的电功率为9W,则:当S断开时R1消耗的电功率为4W,则:解得:(2)S断开时R1和R2串联,根据公式,功率之比等于阻值之比,所以:又因为,所以,S断开时,电阻R2消耗的电功率:(3)S闭合时:S断开时:所以:5.利用如图所示的电路可以测量电源的电动势和内电阻。当滑动变阻器的滑片滑到某一位置时,电流表和电压表的示数分别为I1和U1。改变滑片的位置后,两表的示数分别为I2和U2。写出这个电源电动势和内电阻的表达式。【答案】:E=r=【解析】【分析】由闭合电路欧姆定律列出两次的表达式,联立即可求解.【详解】由全电路欧姆定律得:E=U1+I1rE=U2+I2r解得:E=r=6.如图所示,一矩形线圈在匀强磁场中绕OO′轴匀速转动,磁场方向与转轴垂直.线圈匝数n=100匝,电阻r=1Ω,长l1=0.5m,宽l2=0.4m,角速度ω=10rad/s.磁场的磁感强度B=0.2T.线圈两端外接电阻R=9Ω的用电器,和一个理想交流电流表.试分析求解:(1)线圈中产生感应电动势的最大值;(2)电流表的读数;(3)电阻R上消耗的电功率.【答案】(1)40V;(2)2.82A;(3)72W.【解析】试题分析:(1)线圈中产生感应电动势的最大值E=NBSω=40V;(2)线圈中产生感应拘泥于的最大值I==4A;故电流表的读数为=2.82A;(3)电阻R上消耗的电功率P=(2.82A)2×9Ω=72W.考点:感应电动势,欧姆定律,电功率的计算.7.某校科技小组的同学设计了一个传送带测速仪,测速原理如图所示.在传送带一端的下方固定有间距为L、长度为d的平行金属电极.电极间充满磁感应强度为B、方向垂直传送带平面(纸面)向里、有理想边界的匀强磁场,且电极之间接有理想电压表和电阻R,传送带背面固定有若干根间距为d的平行细金属条,其电阻均为r,传送带运行过程中始终仅有一根金属条处于磁场中,且金属条与电极接触良好.当传送带以一定的速度v匀速运动时,(1)电压表的示数(2)电阻R产生焦耳热的功率(3)每根金属条经过磁场区域的全过程中克服安培力做功【答案】(1);(2);(3).【解析】试题分析:(1)金属条产生的感应电动势为E=BLv,电路中的感应电流为I=,故电压表的示数;(2)电阻R产生焦耳热的功率P=I2R=;(3)每根金属条经过磁场区域的全过程中克服安培力做功W=F安d=BILd=.考点:电磁感应,欧姆定律,焦耳定律,安培力.8.如图所示,某一新型发电装置的发电管是横截面为矩形的水平管道,管道宽为,管道高度为,上、下两面是绝缘板,前后两侧是电阻可忽略的导体板,两导体板与开关和定值电阻相连。整个管道置于匀强磁场中,磁感应强度大小为、方向沿轴正方向。管道内始终充满导电液体,两导体板间液体的电阻为,开关闭合前后,液体均以恒定速率沿轴正方向流动。忽略液体流动时与管道间的流动阻力。(1)开关断开时,求两导板间电压,并比较导体板的电势高低;(2)开关闭合后,求:a.通过电阻的电流及两导体板间电压;b.左右管道口之间的压强差。【答案】(1)U0=Bdv0,(2)a.;b.【解析】【详解】(1)该发电装置原理图等效为如图,管道中液体的流动等效为宽度为d的导体棒切割磁感线,产生的电动势E=Bdv0则开关断开时U0=Bdv0由右手定则可知等效电源MN内部的电流为N到M,则M点为等效正极,有;(2)a.由闭合电路欧姆定律外电路两端的电压:b.设开关闭合后,管道两端压强差分别为,忽略液体所受的摩擦阻力,开关闭合后管道内液体受到安培力为F安,则有联立可得管道两端压强差的变化为:9.如图所示,在两光滑平行金属导轨之间存在方向垂直纸面向里的匀强磁场,磁感应强度大小为B,导轨的间距为L,电阻不计.金属棒垂直于导轨放置,质量为m,重力和电阻可忽略不计.现在导轨左端接入一个电阻为R的定值电阻,给金属棒施加一个水平向右的恒力F,经过时后金属棒达到最大速度.金属棒的最大速度是多少?求金属棒从静止达到最大速度的过程中.通过电阻R的电荷量q;如图乙所示,若将电阻换成一个电容大小为C的电容器认为电容器充放电可瞬间完成.求金属棒由静止开始经过时间t后,电容器所带的电荷量Q.【答案】;;.【解析】【分析】(1)当速度最大时,导体棒受拉力与安培力平衡,根据平衡条件、安培力公式、切割公式列式后联立求解即可;(2)根据法律的电磁感应定律列式求解平均感应电动势、根据欧姆定律列式求解平均电流、再根据电流定义求解电荷量;(3)根据牛顿第二定律和电流的定义式,得到金属棒的加速度表达式,再分析其运动情况.由法拉第电磁感应定律求解MN棒产生的感应电动势,得到电容器的电压,从而求出电容器的电量.【详解】(1)当安培力与外力相等时,加速度为零,物体速度达到最大,即F=BIL=由此可得金属棒的最大速度:vmax=(2)由动量定律可得:(F-)t0=mvmax其中:=解得金属棒从静止达到最大速度的过程中运动的距离:x=-通过电阻R的电荷量:q==-(3)设导体棒运动加速度为a,某时装金属棒的速度为v1,经过t金属体的速度为v2,导体棒中流过的电流充电电流为I,则:F-BIL=ma电流:I==其中:E=BLv2-BLv1=BLv,a=联立各式得:a=因此,导体棒向右做匀加速直线运动.由于所有电阻均忽略,平行板电容器两板间电压U与导体棒切割磁感线产生的感应电动势E相等,电容器的电荷量:Q=CBLat=答:(1)金属棒的最大速度是;(2)金属棒从静止达到最大速度的过程中,通过电阻R的电荷量q为;(3)金属棒由静止开始经过时间t后,电容器所带的电荷量Q为.【点睛】解决本题的关键有两个:一是抓住电流的定义式,结合牛顿第二定律分析金属棒的加速度.二是运用微元法,求解金属棒的位移,其切入口是加速度的定义式.10.如图所示,一电荷量q=3×10-5C带正电的小球,用绝缘细线悬于竖直放置足够大的平行金属板中的O点.电键S合上后,当小球静止时,细线与竖直方向的夹角α=37°.已知两板相距d=0.1m,电源电动势=15V,内阻r=0.5Ω,电阻R1=3Ω,R2=R3=R4=8Ω.g取10m/s2,已知,.求:(1)电源的输出功率;(2)两板间的电场强度的大小;(3)带电小球的质量.【答案】(1)28W(2)140V/m(3)【解析】(1)R外=7.0ΩR总=7.5ΩI="15/7.5=2A"2’P出=I2R外=22×7.="28w"2’(2)U外=IR=2×7="14V"2’E="U/d=14/0.1=140V/m"2’(3)Eq="mgtg37°"2’m=Eq/gtg37°=(140×3×10-5)/(10×0.75)=5.6×10-4kg11.如图甲所示,发光竹蜻蜓是一种常见的儿童玩具,它在飞起时能够发光.某同学对竹蜻蜓的电路作如下简化:如图乙所示,半径为L的金属圆环绕垂直于圆环平面、通过圆心O的金属轴O1O2以角速度ω匀速转动,圆环上接有电阻均为r的三根导电辐条OP、OQ、OR,辐条互成120°角.在圆环内,圆心角为120°的扇形区域内存在垂直圆环平面向下磁感应强度为B的匀强磁场,在转轴O1O2与圆环的边缘之间通过电刷M、N与一个LED灯(可看成二极管,发光时电阻为r).圆环及其它电阻不计,从辐条OP进入磁场开始计时.(1)顺磁感线方向看,圆盘绕O1O2轴沿什么方向旋转,才能使LED灯发光?在不改变玩具结构的情况下,如何使LED灯发光时更亮?(2)在辐条OP转过60°的过程中,求通过LED灯的电流;(3)求圆环每旋转一周,LED灯消耗的电能.【答案】(1)逆时针;增大角速度(2)(3)【解析】试题分析:(1)圆环转动过程,始终有一条导电辐条在切割磁感线,产生感应电动势,并通过M.N和二极管构成闭合回路.由于二极管的单向导电性,只有转轴为正极,即产生指向圆心的感应电流时二极管才发光,根据右手定则判断,圆盘逆时针旋转.要使得LED灯发光时更亮,就要使感应电动势变大,即增大转速增大角速度.(2)导电辐条切割磁感线产生感应电动势此时O点相当于电源正极,P点为电源负极,电源内阻为电源外部为二个导体辐条和二极管并联,即外阻为.通过闭合回路的电流带入即得流过二极管电流为(3)转动过程始终有一个导电辐条在切割磁感线,所以经过二极管的电流不变转过一周所用时间所以二极管消耗的电能考点:电磁感应串并联电路12.如图甲所示,表面绝缘、倾角θ=30°的斜面固定在水平地面上,斜面所在空间有一宽度D=0.40m的匀强磁场区域,其边界与斜面底边平行,磁场方向垂直斜面向上.一个质量m=0.10kg、总电阻R=0.25W的单匝矩形金属框abcd,放在斜面的底端,其中ab边与斜面底边重合,ab边长L=0.50m.从t=0时刻开始,线框在垂直cd边沿斜面向上大小恒定的拉力作用下,从静止开始运动,当线框的ab边离开磁场区域时撤去拉力,线框继续向上运动,线框向上运动过程中速度与时间的关系如图乙所示.已知线框在整个运动过程中始终未脱离斜面,且保持ab边与斜面底边平行,线框与斜面之间的动摩擦因数,重力加速度g取10m/s2.求:(1)线框受到的拉力F的大小;(2)匀强磁场的磁感应强度B的大小;(3)线框在斜面上运动的过程中产生的焦耳热Q.【答案】(1)F="1.5"N(2)(3)【解析】试题分析:(1)由v-t图象可知,在0~0.4s时间内线框做匀加速直线运动,进入磁场时的速度为v1=2.0m/s,所以:………………①………………②联解①②代入数据得:F="1.5"N………………③(2)由v-t图象可知,线框进入磁场区域后以速度v1做匀速直线运动,由法拉第电磁感应定律和欧姆定律有:E=BLv1…④由欧姆定律得:…⑤对于线框匀速运动的过程,由力的平衡条件有:…⑥联解④⑤⑥代入数据得:…⑦(3)由v-t图象可知,线框进入磁场区域后做匀速直线运动,并以速度v1匀速穿出磁场,说明线框的宽度等于磁场的宽度,即为:⑧线框在减速为零时,有:所以线框不会下滑,设线框穿过磁场的时间为t,则:…⑨…⑩联解④⑤⑥代人数据得:…(11)考点:导体切割磁感线时的感应电动势;力的合成与分解的运用;共点力平衡的条件及其应用;闭合电路的欧姆定律.13.如图所示,两足够长平行光滑的金属导轨MN、PQ相距L,导轨平面与水平面夹角为α,导轨电阻不计,磁感应强度为B的匀强磁场垂直导轨平面斜向上,长为L的金属棒ab垂直于MN、PQ放置在导轨上,且始终与导轨接触良好,金属棒的质量为m、电阻为R.两金属导轨的上端连接右侧电路,电路中R2为一电阻箱,已知灯泡的电阻RL=4R,定值电阻R1=2R,调节电阻箱使R2=12R,重力加速度为g,闭合开关S,现将金属棒由静止释放,求:(1)金属棒下滑的最大速度vm;(2)当金属棒下滑距离为s0时速度恰好达到最大,则金属棒由静止下滑2s0的过程中,整个电路产生的电热;(3)改变电阻箱R2的值,当R2为何值时,金属棒达到匀速下滑时R2消耗的功率最大.【答案】(1)(2)(3)时,R2消耗的功率最大.【解析】试题分析:(1)当金属棒匀速下滑时速度最大,达到最大时有mgsina=F安①F安=BIL②I=③其中R总=6R④联立①~④式得金属棒下滑的最大速度⑤(2)由动能定理WG-W安=mvm2⑥由于WG=2mgs0sinαW安=Q解得Q=2mgs0sinα-mvm2将⑤代入上式可得也可用能量转化和守恒求解:再将⑤式代入上式得(3)因金属棒匀速下滑故mgsinα=BIL⑦P2=I22R2⑧联立得即当,即时,R2消耗的功率最大.考点:导体切割磁感线时的感应电动势、闭合电路欧姆定律、电磁感应中的能量转化.【名师点睛】略.14.如图所示,水平面内固定的三条光滑平行金属导轨a、b、c,相距均为d=2m,导轨ac间横跨一质量为m=1kg的金属棒MN,棒与导轨始终良好接触.棒的总电阻r=2Ω,导轨的电阻忽略不计.在导轨bc间接一电阻为R=2Ω的灯泡,导轨ac间接一理想电压表.整个装置放在磁感应强度B=2T匀强磁场中,磁场方向垂直导轨平面向下.现对棒MN施加一水平向右的拉力F,使棒从静止开始运动,已知施加的水平外力功率恒定,经过t=2s时间棒的速度达到=3m/s且以后稳定.试求:(1)金属棒速度稳定时施加的水平恒力F为多大?(2)水平外力F的功率为多少?(3)在此t=2

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论