四川省石室中学2025-2026学年高一上数学期末教学质量检测试题含解析_第1页
四川省石室中学2025-2026学年高一上数学期末教学质量检测试题含解析_第2页
四川省石室中学2025-2026学年高一上数学期末教学质量检测试题含解析_第3页
四川省石室中学2025-2026学年高一上数学期末教学质量检测试题含解析_第4页
四川省石室中学2025-2026学年高一上数学期末教学质量检测试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

四川省石室中学2025-2026学年高一上数学期末教学质量检测试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知函数的图象的对称轴为直线,则()A. B.C. D.2.函数f(x)=的定义域为()A.(2,+∞) B.(0,2)C.(-∞,2) D.(0,)3.不等式恒成立,则的取值范围为()A. B.或C. D.4.下列说法不正确的是A.方程有实根函数有零点B.有两个不同的实根C.函数在上满足,则在内有零点D.单调函数若有零点,至多有一个5.《掷铁饼者》取材于希腊的现实生活中的体育竞技活动,刻画的是一名强健的男子在掷铁饼过程中最具有表现力的瞬间.现在把郑铁饼者张开的双臂近似看成一张拉满弦的“弓”,郑铁饼者的手臂长约为米,肩宽约为米,“弓”所在圆的半径约为1.25米,则郑铁饼者双手之间的距离约为()A.1.01米 B.1.76米C.2.04米 D.2.94米6.若函数(且)的图像经过定点P,则点P的坐标是()A. B.C. D.7.已知x>0,y>0,且x+2y=2,则xy()A.有最大值为1 B.有最小值为1C.有最大值为 D.有最小值为8.下列函数既是定义域上的减函数又是奇函数的是A. B.C. D.9.若,,则的终边在()A.第一象限 B.第二象限C.第三象限 D.第四象限10.若sinα=,α是第二象限角,则sin(2α+)=()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.利用随机数表法对一个容量为90,编号为00,01,02,…,89的产品进行抽样检验,抽取一个容量为10的样本,若选定从第2行第3列的数开始向右读数(下面摘取了随机数表中的第1行至第5行),根据下图,读出的第3个数是___________.12.已知且,则=______________13.如图,扇形的周长是6,该扇形的圆心角是1弧度,则该扇形的面积为______.14.如图所示,中,,边AC上的高,则其水平放置的直观图的面积为______15.已知函数的最大值为,且图像的两条相邻对称轴之间的距离为,求:(1)函数的解析式;(2)当,求函数的单调递减区间16.函数的定义域为D,给出下列两个条件:①对于任意,当时,总有;②在定义域内不是单调函数.请写出一个同时满足条件①②的函数,则______________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.函数中角的终边经过点,若时,的最小值为.(1)求函数的解析式;(2)求函数的单调递增区间.18.已知函数.(1)若,判断函数的零点个数;(2)若对任意实数,函数恒有两个相异的零点,求实数的取值范围;(3)已知且,,求证:方程在区间上有实数根.19.已知(1)若函数和函数的图象关于原点对称,求函数的解析式(2)若在上是增函数,求实数的取值范围20.某公司结合公司的实际情况针对调休安排展开问卷调查,提出了,,三种放假方案,调查结果如下:支持方案支持方案支持方案35岁以下20408035岁以上(含35岁)101040(1)在所有参与调查的人中,用分层抽样的方法抽取个人,已知从“支持方案”的人中抽取了6人,求的值;(2)在“支持方案”的人中,用分层抽样的方法抽取5人看作一个总体,从这5人中任意选取2人,求恰好有1人在35岁以上(含35岁)的概率.21.已知角终边经过点,求

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】根据二次函数的图像的开口向上,对称轴为,可得,且函数在上递增,再根据函数的对称性以及单调性即可求解.【详解】二次函数的图像的开口向上,对称轴为,且函数在上递增,根据二次函数的对称性可知,又,所以,故选:A【点睛】本题考查了二次函数的单调性以及对称性比较函数值的大小,属于基础题.2、B【解析】列不等式求解【详解】,解得故选:B3、A【解析】先讨论系数为0的情况,再结合二次函数的图像特征列不等式即可.【详解】不等式恒成立,当时,显然不恒成立,所以,解得:.故选:A.4、C【解析】A选项,根据函数零点定义进行判断;B选项,由根的判别式进行求解;C选项,由零点存在性定理及举出反例进行说明;D选项,由函数单调性定义及零点存在性定理进行判断.【详解】A.根据函数零点的定义可知:方程有实根⇔函数有零点,∴A正确B.方程对应判别式,∴有两个不同实根,∴B正确C.根据根的存在性定理可知,函数必须是连续函数,否则不一定成立,比如函数,满足条件,但在内没有零点,∴C错误D.若函数为单调函数,则根据函数单调性的定义和函数零点的定义可知,函数和x轴至多有一个交点,∴单调函数若有零点,则至多有一个,∴D正确故选:C5、B【解析】先由题意求出“弓”所在的弧长所对的圆心角,然后利用三角函数求弦长【详解】由题意得,“弓”所在的弧长为,所以其所对的圆心角的绝对值为,所以两手之间的距离故选:B6、B【解析】由函数图像的平移变换或根据可得.【详解】因为,所以当,即时,函数值为定值0,所以点P坐标为.另解:因为可以由向右平移一个单位长度后,再向下平移1个单位长度得到,由过定点,所以过定点.故选:B7、C【解析】利用基本不等式的性质进行求解即可【详解】,,且,(1),当且仅当,即,时,取等号,故的最大值是:,故选:【点睛】本题主要考查基本不等式的应用,注意基本不等式成立的条件8、C【解析】根据函数的单调性与奇偶性对选项中的函数进行判断即可【详解】对于A,f(x)=|x|,是定义域R上的偶函数,∴不满足条件;对于B,f(x),在定义域(﹣∞,0)∪(0,+∞)上是奇函数,且在每一个区间上是减函数,不能说函数在定义域上是减函数,∴不满足条件;对于C,f(x)=﹣x3,在定义域R上是奇函数,且是减函数,∴满足题意;对于D,f(x)=x|x|,在定义域R上是奇函数,且是增函数,∴不满足条件故答案为:C【点睛】本题主要考查函数的单调性和奇偶性,意在考查学生对这些知识的掌握水平和分析推理能力.9、D【解析】根据同角三角函数关系式,化简,结合三角函数在各象限的符号,即可判断的终边所在的象限.【详解】根据同角三角函数关系式而所以故的终边在第四象限故选:D【点睛】本题考查了根据三角函数符号判断角所在的象限,属于基础题.10、D【解析】根据,求出的值,再将所求式子展开,转化成关于和的式子,然后代值得出结果【详解】因为且为第二象限角,根据得,,再根据二倍角公式得原式=,将,代入上式得,原式=故选D【点睛】本题考查三角函数给值求值,在已知角的取值范围时可直接用同角公式求出正余弦值,再利用和差公式以及倍角公式将目标式转化成关于和的式子,然后代值求解就能得出结果二、填空题:本大题共6小题,每小题5分,共30分。11、75【解析】根据随机数表法进行抽样即可.【详解】从随机数表的第2行第3列的数开始向右读数,第一个编号为62,符合;第二个编号为38,符合;第三个编号为97,大于89,应舍去;下一个编号为75,符合.所以读出的第3个数是:75.故答案为:75.12、3【解析】先换元求得函数,然后然后代入即可求解.【详解】且,令,则,即,解得,故答案为:3.13、2【解析】由扇形周长求得半径同,弧长,再由面积公式得结论【详解】设半径为,则,,所以弧长为,面积为故答案为:214、.【解析】直接根据直观图与原图像面积的关系求解即可.【详解】的面积为,由平面图形的面积与直观图的面积间的关系.故答案为:.15、(1);(2)和【解析】(1)根据降幂公式与辅助角公式化简函数解析式,然后由题意求解,从而求解出解析式;(2)根据(1)中的解析式,利用整体法代入化简计算函数的单调减区间,再由,给赋值,求出单调减区间.【小问1详解】化简函数解析式得,因为图像的两条相邻对称轴之间的距离为,即,且函数最大值为,所以且,得,所以函数解析式为.【小问2详解】由(1)得,,得,因为,所以函数的单调减区间为和16、【解析】根据题意写出一个同时满足①②的函数即可.【详解】解:易知:,上单调递减,上单调递减,故对于任意,当时,总有;且在其定义域上不单调.故答案为:.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2),【解析】(1)根据角的终边经过点求,再由题意得周期求即可;(2)根据正弦函数的单调性求单调区间即可.【小问1详解】因为角的终边经过点,所以,若时,的最小值为可知,∴【小问2详解】令,解得故单调递增区间为:,18、⑴见解析;⑵;⑶见解析.【解析】(1)利用判别式定二次函数的零点个数:(2)零点个数问题转化为图象交点个数问题,利用判别式处理即可;(3)方程在区间上有实数根,即有零点,结合零点存在定理可以证明.试题解析:⑴,当时,,函数有一个零点;当时,,函数有两个零点⑵已知,则对于恒成立,即恒成立;所以,从而解得.⑶设,则,在区间上有实数根,即方程在区间上有实数根.点睛:已知函数有零点求参数取值范围常用的方法和思路(1)直接法:直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围;(2)分离参数法:先将参数分离,转化成求函数值域问题加以解决;(3)数形结合法:先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解19、(1)(2)【解析】(1)化简f(x)解析式,设函数的图象上任一点,,它关于原点的对称点为,其中,,利用点在函数的图象上,将其坐标代入的表达式即可得g(x)解析式;(2)可令,将在转化为:,对的系数分类讨论,利用一次函数与二次函数的性质讨论解决即可【小问1详解】设函数的图象上任一点,关于原点的对称点为,则,,由点在函数的图象上,,即,函数的解析式为;【小问2详解】由,设,由,且t在上单调递增,根据复合函数单调性规则,要使h(x)在上为增函数,则在上为增函数,①当时,在,上是增函数满足条件,;②当时,m(t)对称轴方程为直线,(i)当-(1+λ)>0时,,应有t=,解得,(ii当-(1+λ)<0时,,应有,解得;综上所述,20、(1)(2)【解析】(1)根据分层抽样按比例抽取,列出方程,能求出n的值;(2)35岁以下有4人,35岁以上(含35岁)有1人.设将35岁以下的4人标记为1,2,3,4,35岁以上(含35岁)的1人记为a,利用列举法能求出恰好有1人在35岁以上(含35岁)的

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论