版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山西省新绛县2025年数学高二第一学期期末学业水平测试试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.顶点在原点,关于轴对称,并且经过点的抛物线方程为()A. B.C. D.2.设A=37+·35+·33+·3,B=·36+·34+·32+1,则A-B的值为()A.128 B.129C.47 D.03.数学家歌拉在1765年提出定理:三角形的外心、重心、垂心依次位于同一直线上,且重心到外心的距离是重心到垂心距离的一半.这条直线被后人称为三角形的欧拉线.已知的三个顶点分别为,,,则的欧拉线方程是()A. B.C. D.4.下列三个命题:①“若,则a,b全为0”的逆否命题是“若a,b全不为0,则”;②若事件A与事件B互斥,则;③设命题p:若m是质数,则m一定是奇数,那么是真命题;其中真命题的个数为()A.3 B.2C.1 D.05.抛物线准线方程为()A. B.C. D.6.直线平分圆的周长,过点作圆的一条切线,切点为,则()A.5 B.C.3 D.7.公元前6世纪,古希腊的毕达哥拉斯学派研究发现了黄金分割,简称黄金数.离心率等于黄金数的倒数的双曲线称为黄金双曲线.若双曲线是黄金双曲线,则()A. B.C. D.8.曲线与曲线的()A.长轴长相等 B.短轴长相等C.离心率相等 D.焦距相等9.若直线与互相平行,且过点,则直线的方程为()A. B.C. D.10.某商场开通三种平台销售商品,五一期间这三种平台的数据如图1所示.该商场为了解消费者对各平台销售方式的满意程度,用分层抽样的方法抽取了6%的顾客进行满意度调查,得到的数据如图2所示.下列说法正确的是()A.样本中对平台一满意的消费者人数约700B.总体中对平台二满意的消费者人数为18C.样本中对平台一和平台二满意的消费者总人数为60D.若样本中对平台三满意消费者人数为120,则11.曲线y=x3+11在点P(1,12)处的切线与y轴交点的纵坐标是()A.﹣9 B.﹣3C.9 D.1512.已知P是直线上的动点,PA,PB是圆的切线,A,B为切点,C为圆心,那么四边形PACB的面积的最小值是()A2 B.C.3 D.二、填空题:本题共4小题,每小题5分,共20分。13.若命题“”是假命题,则a的取值范围是_______.14.平行六面体中,底面是边长为1的正方形,,则对角线的长度为___.15.已知等比数列满足:,,,则公比______.16.,利用课本中推导等差数列前项和的公式的方法,可求得______三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,在四棱锥中,四边形为平行四边形,且,,三角形为等腰直角三角形,且,.(1)若点为棱的中点,证明:平面平面;(2)若平面平面,点为棱的中点,求直线与平面所成角的正弦值.18.(12分)年世界人工智能大会已于年月在上海徐汇西岸举行,某高校的志愿者服务小组受大会展示项目的启发,会后决定开发一款“猫捉老鼠”的游戏.如图所示,、两个信号源相距米,是的中点,过点的直线与直线的夹角为,机器猫在直线上运动,机器鼠的运动轨迹始终满足:接收到点的信号比接收到点的信号晚秒(注:信号每秒传播米).在时刻时,测得机器鼠距离点为米.(1)以为原点,直线为轴建立平面直角坐标系(如图),求时刻时机器鼠所在位置的坐标;(2)游戏设定:机器鼠在距离直线不超过米的区域运动时,有“被抓”的风险.如果机器鼠保持目前的运动轨迹不变,是否有“被抓”风险?19.(12分)设椭圆:()的离心率为,椭圆上一点到左右两个焦点、的距离之和是4.(1)求椭圆的方程;(2)已知过的直线与椭圆交于、两点,且两点与左右顶点不重合,若,求四边形面积的最大值.20.(12分)已知曲线C的方程为(1)判断曲线C是什么曲线,并求其标准方程;(2)过点的直线l交曲线C于M,N两点,若点P为线段MN的中点,求直线l的方程21.(12分)已知椭圆的焦距为,点在椭圆上.过点的直线l交椭圆于A,B两点.(1)求该椭圆的方程;(2)若点P为直线上的动点,记直线PA,PM,PB的斜率分别为,,.求证:,,成等差数列.22.(10分)等比数列的各项均为正数,且,.(1)求数列的通项公式;(2)设,求数列前项和.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】根据题意,设抛物线的方程为,进而待定系数求解即可.【详解】解:由题,设抛物线的方程为,因为在抛物线上,所以,解得,即所求抛物线方程为故选:C2、A【解析】先化简A-B,发现其结果为二项式展开式,然后计算即可【详解】A-B=37-·36+·35-·34+·33-·32+·3-1=故选A.【点睛】本题主要考查了二项式定理的运用,关键是通过化简能够发现其结果在形式上满足二项式展开式,然后计算出结果,属于基础题3、B【解析】根据的三个顶点坐标,先求解出重心的坐标,然后再根据三个点坐标求解任意两条垂直平分线的方程,联立方程,即可算出外心的坐标,最后根据重心和外心的坐标使用点斜式写出直线方程.【详解】由题意可得的重心为.因为,,所以线段的垂直平分线的方程为.因为,,所以直线的斜率,线段的中点坐标为,则线段的垂直平分线的方程为.联立,解得,则的外心坐标为,故的欧拉线方程是,即故选:B.4、B【解析】写出逆否命题可判断①;根据互斥事件的概率定义可判断②;根据写出再判断真假可判断③.【详解】对于①,“,则a,b全为0”的逆否命题是“若a,b不全为0,则”,故①错误;对于②,满足互斥事件的概率求和的方法,所以②为真命题;③命题p:若m是质数,则m一定是奇数.2是质数,但2是偶数,命题p是假命题,那么真命题故选:B.5、D【解析】由抛物线的准线方程即可求解【详解】由抛物线方程得:.所以,抛物线的准线方程为故选D【点睛】本题主要考查了抛物线的准线方程,属于基础题6、B【解析】根据圆的性质,结合圆的切线的性质进行求解即可.【详解】由,所以该圆的圆心为,半径为,因为直线平分圆的周长,所以圆心在直线上,故,因此,,所以有,所以,故选:B7、A【解析】根据黄金双曲线的定义直接列方程求解【详解】双曲线中的,所以离心率,因为双曲线是黄金双曲线,所以,两边平方得,解得或(舍去),故选:A8、D【解析】分别求出两曲线表示的椭圆的位置,长轴长、短轴长、离心率和焦距,比较可得答案.【详解】曲线表示焦点在x轴上的椭圆,长轴长为10,短轴长为6,离心率为,焦距为8,曲线焦点在x轴上的椭圆,长轴长为,短轴长为,离心率为,焦距为,故选:D9、D【解析】由题意设直线的方程为,然后将点代入直线中,可求出的值,从而可得直线的方程【详解】因为直线与互相平行,所以设直线的方程为,因为直线过点,所以,得,所以直线的方程为,故选:D10、C【解析】根据扇形图和频率分布直方图判断.【详解】对于A:样本中对平台一满意的人数为,故选项A错误;对于B:总体中对平台二满意的人数约为,故选项B错误;对于C:样本中对平台一和平台二满意的总人数为:,故选项C正确:对于D:对平台三的满意率为,所以,故选项D错误故选:C11、C【解析】y′=3x2,则y′|x=1=3,所以曲线在P点处的切线方程为y-12=3(x-1)即y=3x+9,它在y轴上的截距为9.12、D【解析】由圆C的标准方程可得圆心为(1,1),半径为1,根据切线的性质可得四边形PACB面积等于,,故求解最小时即可确定四边形PACB面积的最小值.【详解】圆C:x2+y2-2x-2y+1=0即,表示以C(1,1)为圆心,以1为半径的圆,由于四边形PACB面积等于2×××=,而,故当最小时,四边形PACB面积最小,又的最小值等于圆心C到直线l:的距离d,而,故四边形PACB面积的最小值为,故选:D二、填空题:本题共4小题,每小题5分,共20分。13、【解析】依题意可得是真命题,参变分离得到,再利用基本不等式计算可得;【详解】解:因为命题“”是假命题,所以命题“”是真命题,即,所以,因为,当且仅当即时取等号,所以,即故答案:14、2【解析】利用,两边平方后,利用向量数量积计算公式,计算得.【详解】对两边平方并化简得,故.【点睛】本小题主要考查空间向量的加法和减法运算,考查空间向量数量积的表示,属于中档题.15、【解析】根据等比数列的通项公式可得,结合即可求出公比.【详解】设等比数列的公式为q,则,即,解得,又,所以,所以.故答案为:.16、2020【解析】先证得,利用倒序相加法求得表达式值.【详解】解:由题意可知,令S=则S=两式相加得,故填:【点睛】本题考查借助倒序相加求函数值的和,属于中档题,解题关键是找到的规律三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析(2)【解析】(1)先证明,,进而证明平面,即可证明平面,从而证明平面平面.(2)以点为坐标原点,分别以,,所在直线为轴,轴,轴,建立如图所示的空间直角坐标系,用向量法求解即可【小问1详解】因为为等腰直角三角形,点为棱的中点,所以,又因为,,所以,又因为在中,,,所以,所以,所以,又因为,所以平面,又因为为平行四边形,所以,所以平面,又因为平面,所以平面平面.【小问2详解】因为平面平面,平面平面,,所以平面,又因为,以点为坐标原点,分别以,,所在直线为轴,轴,轴,建立如图所示的空间直角坐标系.则,,,,所以,,,,设平面的一个法向量为,则由,,可得令,得,设直线与平面所成角为,,所以直线与平面所成角的正弦值为.18、(1);(2)没有.【解析】(1)设机器鼠位置为点,由题意可得,即,可得的轨迹为以、为焦点的双曲线的右支,分析取值,即得解双曲线的方程,由可得P点坐标.(2)转化机器鼠与直线最近的距离为与直线平行的直线与双曲线相切时,平行线间的距离,设的方程为,与双曲线联立,求出的值,再利用平行线间的距离公式,即得解【详解】(1)设机器鼠位置为点,、,由题意可得,即,可得的轨迹为以、为焦点的双曲线的右支,设其方程为:(,),则、、,则的轨迹方程为:(),时刻时,,即,可得机器鼠所在位置的坐标为;(2)由题意,直线,设直线的平行线的方程为,联立,可得:,,解得,又,∴,∴,即:与双曲线的右支相切,切点即为双曲线右支上距离最近的点,此时与的距离为,即机器鼠距离最小的距离为,则机器鼠保持目前运动轨迹不变,没有“被抓”的风险.19、(1);(2)6.【解析】(1)本小题根据题意先求,,,再求椭圆的标准方程;(2)本小题先设过的直线的方程,再根据题意表示出四边形的面积,最后求最值即可.【详解】解:(1)∵椭圆上一点到左右两个焦点、的距离之和是4,∴即,∵,∴,又∵,∴.∴椭圆的标准方程为;(2)设点、的坐标为,,因为直线过点,所以可设直线方程为,联立方程,消去可得:,化简整理得,其中,所以,,因为,所以四边形是平行四边形,设平面四边形的面积为,则,设,则(),所以,因为,所以,,所以四边形面积的最大值为6.【点睛】本题考查椭圆的标准方程,相交弦等问题,是偏难题.20、(1);(2).【解析】(1)根据椭圆的定义即可判断并求解;(2)根据点差法即可求解中点弦斜率和中点弦方程.【小问1详解】设,,E(x,y),∵,,且,点的轨迹是以,为焦点,长轴长为4的椭圆设椭圆C的方程为,记,则,,,,,曲线的标准方程为【小问2详解】根据椭圆对称性可知直线l斜率存在,设,则,由①-②得,,∴l:,即.21、(1);(2)证明见解析.【解析】(1)根据焦点坐标及椭圆上的点,利用椭圆的定义求出a,再由关系求b,即可得解;(2)分直线斜率存在与不存在两种情况讨论,利用斜率公式计算出,根据等差中项计算,即可证明成等差数
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 神经康复功能训练
- 2025年牙科正畸见证协议
- 2025年崇左凭祥市中小学教师招聘笔试备考试题及答案解析
- 营养体重管理课件
- 医学免疫学常见症状及护理手段
- 多动症病状辨认及护理指导
- 2025年改则县教师招聘考试参考题库及答案解析
- 2025年珠海市香洲区教师招聘考试参考题库及答案解析
- 2025年虚拟数字人制作协议
- 2025年虚拟数字人形象营销合作协议
- 孕期心理护理课件
- 计算生物学与生物信息学
- 日母亲心得体会5篇
- 一年级英语阅读材料
- 心电图检测技术操作SOP
- 陕西庙会会谱
- 最全地理顺口溜(初高中均适用)
- 旅游报名登记表
- GB/T 3766-2015液压传动系统及其元件的通用规则和安全要求
- GB/T 1226-2017一般压力表
- GB 16668-2010干粉灭火系统及部件通用技术条件
评论
0/150
提交评论