版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
四川省成都龙泉第二中学2025年数学高二上期末调研试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知双曲线的两个顶点分别为A、B,点P为双曲线上除A、B外任意一点,且点P与点A、B连线的斜率为,若,则双曲线的离心率为()A. B.C.2 D.32.若动点满足方程,则动点P的轨迹方程为()A. B.C. D.3.抛物线的焦点到直线的距离()A. B.C.1 D.24.用反证法证明“若a,b∈R,,则a,b不全为0”时,假设正确的是()A.a,b中只有一个为0 B.a,b至少一个不为0C.a,b至少有一个为0 D.a,b全为05.北京大兴国际机场的显著特点之一是各种弯曲空间的运用,在数学上用曲率刻画空间弯曲性.规定:多面体的顶点的曲率等于与多面体在该点的面角之和的差(多面体的面的内角叫做多面体的面角,角度用弧度制),多面体面上非顶点的曲率均为零,多面体的总曲率等于该多面体各顶点的曲率之和.例如:正四面体在每个顶点有个面角,每个面角是,所以正四面体在每个顶点的曲率为,故其总曲率为.给出下列三个结论:①正方体在每个顶点的曲率均为;②任意四棱锥总曲率均为;③若某类多面体的顶点数,棱数,面数满足,则该类多面体的总曲率是常数.其中,所有正确结论的序号是()A.①② B.①③C.②③ D.①②③6.已知动点满足,则动点的轨迹是()A.椭圆 B.直线C.线段 D.圆7.已知点,,则经过点且经过线段AB的中点的直线方程为()A. B.C. D.8.命题p:存在一个实数﹐它的绝对值不是正数.则下列结论正确的是()A.:任意实数,它的绝对值是正数,为假命题B.:任意实数,它的绝对值不是正数,为假命题C.:存在一个实数,它的绝对值是正数,为真命题D.:存在一个实数,它的绝对值是负数,为真命题9.在空间直角坐标系中,点关于轴的对称点为点,则点到直线的距离为()A. B.C. D.610.已知动点的坐标满足方程,则的轨迹方程是()A. B.C. D.11.已知数列为等差数列,则下列数列一定为等比数列的是()A. B.C. D.12.已知方程表示双曲线,则实数的取值范围是()A.或 B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知单位空间向量,,满足,.若空间向量满足,且对于任意实数,的最小值是2,则的最小值是___________.14.已知数列的各项均为正数,记为的前n项和,从下面①②③中选取两个作为条件,证明另外一个成立①数列是等差数列:②数列是等差数列;③注:若选择不同的组合分别解答,则按第一个解答计分15.焦点在轴上的双曲线的离心率为,则的值为___________.16.过圆上一点的圆的切线的一般式方程为________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)椭圆的左右焦点分别为,,焦距为,为原点.椭圆上任意一点到,距离之和为.(1)求椭圆的标准方程;(2)过点的斜率为2的直线交椭圆于、两点,求的面积.18.(12分)已知圆,圆心在直线上(1)求圆的标准方程;(2)求直线被圆截得的弦的长19.(12分)已知数列{an}的前n项和为Sn,.(1)求数列{an}通项公式;(2)求数列的前n项和,求使不等式成立的最大整数m的值.20.(12分)在四棱锥P﹣ABCD中,∠ABC=∠ACD=90°,∠BAC=∠CAD=60°,PA⊥平面ABCD,E为PD的中点,PA=2AB=2(1)求四棱锥P﹣ABCD的体积V;(2)若F为PC的中点,求证PC⊥平面AEF21.(12分)已知椭圆的离心率为,左、右焦点分别为,,过的直线交椭圆E于A,B两点.当轴时,(1)求椭圆E的方程;(2)求的范围22.(10分)如图,直四棱柱的底面是菱形,,,直线与平面ABCD所成角的正弦值为.E,F分别为、的中点.(1)求证:平面BED;(2)求直线与平面FAC所成角的正弦值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】根据题意设设,根据题意得到,进而求得离心率【详解】根据题意得到设,因为,所以,所以,则故选:C.2、A【解析】根据方程可以利用几何意义得到动点P的轨迹方程是以与为焦点的椭圆方程,从而求出轨迹方程.【详解】由题意得:到与的距离之和为8,且8>4,故动点P的轨迹方程是以与为焦点的椭圆方程,故,,所以,,所以椭圆方程为.故选:A3、B【解析】由抛物线可得焦点坐标,结合点到直线的距离公式,即可求解.【详解】由抛物线可得焦点坐标为,根据点到直线的距离公式,可得,即抛物线的焦点到直线的距离为.故选:B.4、D【解析】把要证的结论否定之后,即得所求的反设【详解】由于“a,b不全为0”的否定为:“a,b全为0”,所以假设正确的是a,b全为0.故选:D5、D【解析】根据曲率的定义依次判断即可.【详解】①根据曲率的定义可得正方体在每个顶点的曲率为,故①正确;②由定义可得多面体的总曲率顶点数各面内角和,因为四棱锥有5个顶点,5个面,分别为4个三角形和1个四边形,所以任意四棱锥的总曲率为,故②正确;③设每个面记为边形,则所有的面角和为,根据定义可得该类多面体的总曲率为常数,故③正确.故选:D.6、C【解析】根据两点之间的距离公式的几何意义即可判定出动点轨迹.【详解】由题意可知表示动点到点和点的距离之和等于,又因为点和点的距离等于,所以动点的轨迹为线段.故选:7、C【解析】求AB的中点坐标,根据直线所过的两点坐标求直线方程即可.【详解】由已知,AB中点为,又,∴所求直线斜率为,故直线方程为,即故选:C.8、A【解析】根据存在量词命题的否定为全称量词命题判断,再利用特殊值判断命题的真假;【详解】解:因为命题p“存在一个实数﹐它的绝对值不是正数”为存在量词命题,其否定为“任意实数,它的绝对值是正数”,因为,所以为假命题;故选:A9、C【解析】按照空间中点到直线的距离公式直接求解.【详解】由题意,,,的方向向量,,则点到直线的距离为.故选:C.10、C【解析】此方程表示点到点的距离与到点的距离之差为8,而这正好符合双曲线的定义,点的轨迹是双曲线的右支,,的轨迹方程是,故选C.11、A【解析】根据等比数列的定义判断【详解】设的公差是,即,显然,且是常数,是等比数列,若中一个为1,则,则不是等比数列,只要,,都不可能是等比数列,如,,故选:A12、A【解析】根据双曲线标准方程的性质,列出关于不等式,求解即可得到答案【详解】由双曲线的性质:,解的或,故选:A二、填空题:本题共4小题,每小题5分,共20分。13、【解析】以,方向为轴,垂直于,方向为轴建立空间直角坐标系,根据条件求得坐标,由二次函数求最值即可求得最小值.【详解】以,方向为轴,垂直于,方向为轴建立空间直角坐标系,则,由可设,由是单位空间向量可得,由可设,,当,的最小值是2,所以,取,,,当时,最小值为.故答案为:.14、证明过程见解析【解析】选①②作条件证明③时,可设出,结合的关系求出,利用是等差数列可证;也可分别设出公差,写出各自的通项公式后利用两者的关系,对照系数,得到等量关系,进行证明.选①③作条件证明②时,根据等差数列的求和公式表示出,结合等差数列定义可证;选②③作条件证明①时,设出,结合的关系求出,根据可求,然后可证是等差数列;也可利用前两项的差求出公差,然后求出通项公式,进而证明出结论.【详解】选①②作条件证明③:[方法一]:设,则,当时,;当时,;因为也是等差数列,所以,解得;所以,,故.[方法二]:设等差数列的公差为d,等差数列的公差为,则,将代入,化简得对于恒成立则有,解得.所以选①③作条件证明②:因为,是等差数列,所以公差,所以,即,因为,所以是等差数列.选②③作条件证明①:[方法一]:设,则,当时,;当时,;因为,所以,解得或;当时,,当时,满足等差数列的定义,此时为等差数列;当时,,不合题意,舍去.综上可知为等差数列.[方法二]【最优解】:因为,所以,,因为也为等差数列,所以公差,所以,故,当时,,当时,满足上式,故的通项公式为,所以,,符合题意.【整体点评】这类题型在解答题后可证是等差数列;法二:利用是等差数列即前两项的差求出公差,然后求出的通项公式,利用,求出的通项公式,进而证明出结论.15、【解析】将双曲线的方程化为标准式,可得出、,由此可得出关于的等式,即可解得的值.【详解】双曲线的标准方程为,由题意可得,则,,,所以,,解得.故答案为:.16、【解析】求出过切线的半径所在直线斜率,由垂直关系得切线斜率,然后得直线方程,现化为一般式【详解】圆心为,,所以切线的斜率为,切线方程为,即故答案为:【点睛】本题考查求过圆上一点的圆的切线方程,利用切线性质求得斜率后易得直线方程三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)根据题意和椭圆的定义可知a,c,再根据,即可求出b,由此即可求出椭圆的方程;(2)求出直线方程,将其与椭圆方程联立,根据弦长公式求出的长度,再根据点到直线的距离公式求出点O到直线AB的距离,再根据面积公式即可求出结果.【小问1详解】由题意可得,,∴,,,所以椭圆的标准方程为.【小问2详解】直线l的方程为,代入椭圆方程得,设,,则,,,∴,又∵点O到直线AB的距离,∴,即△OAB的面积为.18、(1);(2)【解析】(1)由圆的一般式方程求出圆心代入直线即可求出得值,即可求解;(2)先计算圆心到直线的距离,利用即可求弦长.【详解】(1)由圆,可得所以圆心为,半径又圆心在直线上,即,解得所以圆的一般方程为,故圆的标准方程为(2)由(1)知,圆心,半径圆心到直线的距离则直线被圆截得的弦的长为所以,直线被圆截得弦的长为【点睛】方法点睛:圆的弦长的求法(1)几何法,设圆的半径为,弦心距为,弦长为,则;(2)代数法,设直线与圆相交于,,联立直线与圆的方程,消去得到一个关于的一元二次方程,从而可求出,,根据弦长公式,即可得出结果.19、(1);(2).【解析】(1)根据给定的递推公式变形,再构造常数列求解作答.(2)利用(1)的结论求出,再利用裂项相消法求和,由单调性求出最大整数m值作答.【小问1详解】依题意,,当时,,两式相减得:,即,整理得:,于是得,所以数列{an}的通项公式是.【小问2详解】由(1)得,,数列是递增数列,因此,,于是有,则,不等式成立,则,,于是得,所以使不等式成立的最大整数m的值是505.【点睛】思路点睛:使用裂项法求和时,要注意正负项相消时消去了哪些项,保留了哪些项,切不可漏写未被消去的项,未被消去的项有前后对称的特点,实质上造成正负相消是此法的根源与目的20、(1)(2)见解析.【解析】(1)在中,,求得,由此能求出四棱锥的体积;(2)由平面,证得和,由此利用线面垂直的判定定理,即可证得平面.试题解析:(1)在中,.在中,.则.(2),为的中点,.平面.平面.为中点,为为中点,,则.平面.考点:四棱锥的体积公式;直线与平面垂直的判定与证明.21、(1)(2)【解析】(1)根据离心率及通径长求出椭圆方程;(2)分直线AB斜率存在和斜率不存在两种情况得到的范围,进而得到答案.【小问1详解】当轴时,取代入椭圆方程得:,得,所以,又,解得,,所以椭圆方程为【小问2详解】由,记,当轴时,由(1)知:,所以,当AB斜率为k时,直线AB为,,消去y得,所以,,所以,综上,的范围是.22、(1)证明见解析(2)【解析】(1)证明垂直于平面BED内的两条相交直线,即可得到答案;(2)分别以OB,OC,OE为x轴,y轴,z轴
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年长江艺术工程职业学院单招职业技能笔试备考题库带答案解析
- 2026年山东华宇工学院单招职业技能笔试备考题库带答案解析
- 2026年乐山职业技术学院单招职业技能考试备考题库带答案解析
- 泸州市2024四川泸州市城市建设档案和信息中心招聘编外聘用人员1人笔试历年参考题库典型考点附带答案详解(3卷合一)试卷2套
- 曲阜市2024山东济宁市曲阜市事业单位招聘(综合类)56人笔试历年参考题库典型考点附带答案详解(3卷合一)试卷2套
- 北海市2024广西北海市城市照明管理处招聘5人笔试历年参考题库典型考点附带答案详解(3卷合一)试卷2套
- 2025陕西中烟工业有限责任公司应届高校毕业生招聘拟补录人员笔试历年备考题库附带答案详解
- 2025西安西安安居笙活商业运营管理有限公司招聘(3人)笔试历年难易错考点试卷带答案解析
- 2025湖北荆州市融资担保集团有限公司招聘工作人员综合及考察笔试历年难易错考点试卷带答案解析
- 2025浙江温州市泰顺县文旅集团有限公司招聘编外工作人员(工程岗)拟聘用人员笔试历年常考点试题专练附带答案详解
- 幼儿园手指律动培训大纲
- 2023年萍乡辅警招聘考试真题及答案详解参考
- 浙江省嵊州市2025-2026学年高二上数学期末质量检测试题含解析
- 湖北省宜昌市秭归县2026届物理八年级第一学期期末学业水平测试模拟试题含解析
- 案场物业管理评估汇报
- 重庆水利安全员c证考试题库和及答案解析
- 【基于微信小程序的书籍共享平台的设计与实现14000字】
- 基金从业内部考试及答案解析
- 2025秋期版国开电大本科《理工英语4》一平台综合测试形考任务在线形考试题及答案
- 酒店水电改造工程方案(3篇)
- GB/T 23987.3-2025色漆和清漆实验室光源曝露方法第3部分:荧光紫外灯
评论
0/150
提交评论