版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
苏教七年级下册期末解答题压轴数学资料专题试题A卷及解析一、解答题1.在△ABC中,射线AG平分∠BAC交BC于点G,点D在BC边上运动(不与点G重合),过点D作DE∥AC交AB于点E.(1)如图1,点D在线段CG上运动时,DF平分∠EDB①若∠BAC=100°,∠C=30°,则∠AFD=;若∠B=40°,则∠AFD=;②试探究∠AFD与∠B之间的数量关系?请说明理由;(2)点D在线段BG上运动时,∠BDE的角平分线所在直线与射线AG交于点F试探究∠AFD与∠B之间的数量关系,并说明理由2.解读基础:(1)图1形似燕尾,我们称之为“燕尾形”,请写出、、、之间的关系,并说明理由;(2)图2形似8字,我们称之为“八字形”,请写出、、、之间的关系,并说明理由:应用乐园:直接运用上述两个结论解答下列各题(3)①如图3,在中,、分别平分和,请直接写出和的关系;②如图4,.(4)如图5,与的角平分线相交于点,与的角平分线相交于点,已知,,求和的度数.3.(1)如图1所示,△ABC中,∠ACB的角平分线CF与∠EAC的角平分线AD的反向延长线交于点F;①若∠B=90°则∠F=;②若∠B=a,求∠F的度数(用a表示);(2)如图2所示,若点G是CB延长线上任意一动点,连接AG,∠AGB与∠GAB的角平分线交于点H,随着点G的运动,∠F+∠H的值是否变化?若变化,请说明理由;若不变,请求出其值.4.(生活常识)射到平面镜上的光线(入射光线)和变向后的光线(反射光线)与平面镜所夹的角相等.如图1,MN是平面镜,若入射光线AO与水平镜面夹角为∠1,反射光线OB与水平镜面夹角为∠2,则∠1=∠2.(现象解释)如图2,有两块平面镜OM,ON,且OM⊥ON,入射光线AB经过两次反射,得到反射光线CD.求证AB∥CD.(尝试探究)如图3,有两块平面镜OM,ON,且∠MON=55,入射光线AB经过两次反射,得到反射光线CD,光线AB与CD相交于点E,求∠BEC的大小.(深入思考)如图4,有两块平面镜OM,ON,且∠MONα,入射光线AB经过两次反射,得到反射光线CD,光线AB与CD所在的直线相交于点E,∠BED=β,α与β之间满足的等量关系是.(直接写出结果)5.模型与应用.(模型)(1)如图①,已知AB∥CD,求证∠1+∠MEN+∠2=360°.(应用)(2)如图②,已知AB∥CD,则∠1+∠2+∠3+∠4+∠5+∠6的度数为.如图③,已知AB∥CD,则∠1+∠2+∠3+∠4+∠5+∠6+…+∠n的度数为.(3)如图④,已知AB∥CD,∠AM1M2的角平分线M1O与∠CMnMn-1的角平分线MnO交于点O,若∠M1OMn=m°.在(2)的基础上,求∠2+∠3+∠4+∠5+∠6+……+∠n-1的度数.(用含m、n的代数式表示)6.已知:∠MON=36°,OE平分∠MON,点A,B分别是射线OM,OE,上的动点(A,B不与点O重合),点D是线段OB上的动点,连接AD并延长交射线ON于点C,设∠OAC=x,(1)如图1,若AB∥ON,则①∠ABO的度数是______;②当∠BAD=∠ABD时,x=______;当∠BAD=∠BDA时,x=______;(2)如图2,若AB⊥OM,则是否存在这样的x的值,使得△ABD中有两个相等的角?若存在,求出x的值;若不存在,请说明理由.7.已知,点、分别是、上的点,点在、之间,连接、.(1)如图1,若,求的度数.(2)在(1)的条件下,分别作和的平分线交于点,求的度数.(3)如图2,若点是下方一点,平分,平分,已知.则判断以下两个结论是否正确,并证明你认为正确的结论.①为定值;②为定值.8.如图1,将一副三角板与三角板摆放在一起;如图2,固定三角板,将三角板绕点A按顺时针方向旋转,记旋转角().(1)当________度时,;当________度时;(2)当的一边与的某一边平行(不共线)时,直接写出旋转角的所有可能的度数;(3)当,连接,利用图4探究的度数是否发生变化,并给出你的证明.9.如图,直线MN∥GH,直线l1分别交直线MN、GH于A、B两点,直线l2分别交直线MN、GH于C、D两点,且直线l1、l2交于点E,点P是直线l2上不同于C、D、E点的动点.(1)如图①,当点P在线段CE上时,请直写出∠NAP、∠HBP、∠APB之间的数量关系:;(2)如图②,当点P在线段DE上时,(1)中的∠NAP、∠HBP、∠APB之间的数量关系还成立吗?如果成立,请说明成立的理由;如果不成立,请写出这三个角之间的数量关系,并说明理由.(3)如果点P在直线l2上且在C、D两点外侧运动时,其他条件不变,请直接写出∠NAP、∠HBP、∠APB之间的数量关系.10.认真阅读下面关于三角形内外角平分线所夹角的探究片段,完成所提出的问题.(探究1):如图1,在ΔABC中,O是∠ABC与∠ACB的平分线BO和CO的交点,通过分析发现∠BOC=90º+∠A,(请补齐空白处)理由如下:∵BO和CO分别是∠ABC和∠ACB的角平分线,∴∠1=∠ABC,_________________,在ΔABC中,∠A+∠ABC+∠ACB=180º.∴∠1+∠2=(∠ABC+∠ACB)=(180º-∠A)=90º-∠A,∴∠BOC=180º-(∠1+∠2)=180º-(________)=90º+∠A.(探究2):如图2,已知O是外角∠DBC与外角∠ECB的平分线BO和CO的交点,则∠BOC与∠A有怎样的关系?请说明理由.(应用):如图3,在RtΔAOB中,∠AOB=90º,已知AB不平行与CD,AC、BD分别是∠BAO和∠ABO的角平分线,又CE、DE分别是∠ACD和∠BDC的角平分线,则∠E=_______;(拓展):如图4,直线MN与直线PQ相交于O,∠MOQ=60º,点A在射线OP上运动,点B在射线OM上运动,延长BA至G,已知∠BAO、∠OAG的角平分线与∠BOQ的角平分线及其延长线交于E、F,在ΔAEF中,如果有一个角是另一个角的4倍,则∠ABO=______.【参考答案】一、解答题1.(1)①115°;110°;②;理由见解析;(2);理由见解析【分析】(1)①若∠BAC=100°,∠C=30°,由三角形内角和定理求出∠B=50°,由平行线的性质得出∠EDB=∠C=30°,由解析:(1)①115°;110°;②;理由见解析;(2);理由见解析【分析】(1)①若∠BAC=100°,∠C=30°,由三角形内角和定理求出∠B=50°,由平行线的性质得出∠EDB=∠C=30°,由角平分线定义得出,,由三角形的外角性质得出∠DGF=100°,再由三角形的外角性质即可得出结果;若∠B=40°,则∠BAC+∠C=180°-40°=140°,由角平分线定义得出,,由三角形的外角性质即可得出结果;②由①得:∠EDB=∠C,,,由三角形的外角性质得出∠DGF=∠B+∠BAG,再由三角形的外角性质即可得出结论;(2)由(1)得:∠EDB=∠C,,,由三角形的外角性质和三角形内角和定理即可得出结论.【详解】(1)①若∠BAC=100°,∠C=30°,则∠B=180°-100°-30°=50°,∵DE∥AC,∴∠EDB=∠C=30°,∵AG平分∠BAC,DF平分∠EDB,∴,,∴∠DGF=∠B+∠BAG=50°+50°=100°,∴∠AFD=∠DGF+∠FDG=100°+15°=115°;若∠B=40°,则∠BAC+∠C=180°-40°=140°,∵AG平分∠BAC,DF平分∠EDB,∴,,∵∠DGF=∠B+∠BAG,∴∠AFD=∠DGF+∠FDG=∠B+∠BAG+∠FDG=故答案为:115°;110°;②;理由如下:由①得:∠EDB=∠C,,,∵∠DGF=∠B+∠BAG,∴∠AFD=∠DGF+∠FDG=∠B+∠BAG+∠FDG=;(2)如图2所示:;理由如下:由(1)得:∠EDB=∠C,,,∵∠AHF=∠B+∠BDH,∴∠AFD=180°-∠BAG-∠AHF.【点睛】本题考查了三角形内角和定理、三角形的外角性质、平行线的性质等知识;熟练掌握三角形内角和定理和三角形的外角性质是解题的关键.2.(1),理由详见解析;(2),理由详见解析:(3)①;②360°;(4);.【分析】(1)根据三角形外角等于不相邻的两个内角之和即可得出结论;(2)根据三角形内角和定理及对顶角相等即可得出结解析:(1),理由详见解析;(2),理由详见解析:(3)①;②360°;(4);.【分析】(1)根据三角形外角等于不相邻的两个内角之和即可得出结论;(2)根据三角形内角和定理及对顶角相等即可得出结论;(3)①根据角平分线的定义及三角形内角和定理即可得出结论;②连结BE,由(2)的结论及四边形内角和为360°即可得出结论;(4)根据(1)的结论、角平分线的性质以及三角形内角和定理即可得出结论.【详解】(1).理由如下:如图1,,,,;(2).理由如下:在中,,在中,,,;(3)①,,、分别平分和,,.故答案为:.②连结.∵,.故答案为:;(4)由(1)知,,,,,,,,,,,;.【点睛】本题考查了角平分线的性质,三角形内角和;熟练掌握角平分线的性质,进行合理的等量代换是解题的关键.3.(1)①45°;②∠F=a;(2)∠F+∠H的值不变,是定值180°.【分析】(1)①②依据AD平分∠CAE,CF平分∠ACB,可得∠CAD=∠CAE,∠ACF=∠ACB,依据∠CAE是△ABC解析:(1)①45°;②∠F=a;(2)∠F+∠H的值不变,是定值180°.【分析】(1)①②依据AD平分∠CAE,CF平分∠ACB,可得∠CAD=∠CAE,∠ACF=∠ACB,依据∠CAE是△ABC的外角,可得∠B=∠CAE-∠ACB,再根据∠CAD是△ACF的外角,即可得到∠F=∠CAD-∠ACF=∠CAE-∠ACB=(∠CAE-∠ACB)=∠B;(2)由(1)可得,∠F=∠ABC,根据角平分线的定义以及三角形内角和定理,即可得到∠H=90°+∠ABG,进而得到∠F+∠H=90°+∠CBG=180°.【详解】解:(1)①∵AD平分∠CAE,CF平分∠ACB,∴∠CAD=∠CAE,∠ACF=∠ACB,∵∠CAE是△ABC的外角,∴∠B=∠CAE﹣∠ACB,∵∠CAD是△ACF的外角,∴∠F=∠CAD﹣∠ACF=∠CAE﹣∠ACB=(∠CAE﹣∠ACB)=∠B=45°,故答案为45°;②∵AD平分∠CAE,CF平分∠ACB,∴∠CAD=∠CAE,∠ACF=∠ACB,∵∠CAE是△ABC的外角,∴∠B=∠CAE﹣∠ACB,∵∠CAD是△ACF的外角,∴∠F=∠CAD﹣∠ACF=∠CAE﹣∠ACB=(∠CAE﹣∠ACB)=∠B=a;(2)由(1)可得,∠F=∠ABC,∵∠AGB与∠GAB的角平分线交于点H,∴∠AGH=∠AGB,∠GAH=∠GAB,∴∠H=180°﹣(∠AGH+∠GAH)=180°﹣(∠AGB+∠GAB)=180°﹣(180°﹣∠ABG)=90°+∠ABG,∴∠F+∠H=∠ABC+90°+∠ABG=90°+∠CBG=180°,∴∠F+∠H的值不变,是定值180°.【点睛】本题主要考查了三角形内角和定理、三角形外角性质的综合运用,熟练运用定理是解题的关键.4.【现象解释】见解析;【尝试探究】BEC70;【深入思考】2.【分析】[现象解释]根据平面镜反射光线的规律得∠1=∠2,∠3=∠4,再利用∠2+∠3=90°得出∠1+∠2+∠解析:【现象解释】见解析;【尝试探究】BEC70;【深入思考】2.【分析】[现象解释]根据平面镜反射光线的规律得∠1=∠2,∠3=∠4,再利用∠2+∠3=90°得出∠1+∠2+∠3+∠4=180°,即可得出∠DCB+∠ABC=180°,即可证得AB∥CD;[尝试探究]根据三角形内角和定理求得∠2+∠3=125°,根据平面镜反射光线的规律得∠1=∠2,∠3=∠4,再利用平角的定义得出∠1+∠2+∠EBC+∠3+∠4+∠BCE=360°,即可得出∠EBC+BCE=360°-250°=110°,根据三角形内角和定理即可得出∠BEC=180°-110°=70°;[深入思考]利用平角的定义得出∠ABC=180°-2∠2,∠BCD=180°-2∠3,利用外角的性质∠BED=∠ABC-∠BCD=(180°-2∠2)-(180°-2∠3)=2(∠3-∠2)=β,而∠BOC=∠3-∠2=α,即可证得β=2α.【详解】[现象解释]如图2,∵OM⊥ON,∴∠CON=90°,∴∠2+∠3=90°∵∠1=∠2,∠3=∠4,∴∠1+∠2+∠3+∠4=180°,∴∠DCB+∠ABC=180°,∴AB∥CD;【尝试探究】如图3,在△OBC中,∵∠COB=55°,∴∠2+∠3=125°,∵∠1=∠2,∠3=∠4,∴∠1+∠2+∠3+∠4=250°,∵∠1+∠2+∠EBC+∠3+∠4+∠BCE=360°,∴∠EBC+BCE=360°-250°=110°,∴∠BEC=180°-110°=70°;【深入思考】如图4,β=2α,理由如下:∵∠1=∠2,∠3=∠4,∴∠ABC=180°-2∠2,∠BCD=180°-2∠3,∴∠BED=∠ABC-∠BCD=(180°-2∠2)-(180°-2∠3)=2(∠3-∠2)=β,∵∠BOC=∠3-∠2=α,∴β=2α.【点睛】本题考查了平行线的判定,三角形外角的性质以及三角形内角和定理,熟练掌握三角形的性质是解题的关键.5.(1)证明见解析;(2)900°,180°(n-1);(3)(180n-180-2m)°【详解】【模型】(1)证明:过点E作EF∥CD,∵AB∥CD,∴EF∥AB,∴∠1+∠MEF解析:(1)证明见解析;(2)900°,180°(n-1);(3)(180n-180-2m)°【详解】【模型】(1)证明:过点E作EF∥CD,∵AB∥CD,∴EF∥AB,∴∠1+∠MEF=180°,同理∠2+∠NEF=180°∴∠1+∠2+∠MEN=360°【应用】(2)分别过E点,F点,G点,H点作L1,L2,L3,L4平行于AB,利用(1)的方法可得∠1+∠2+∠3+∠4+∠5+∠6=180×5=900°;由上面的解题方法可得:∠1+∠2+∠3+∠4+∠5+∠6+…+∠n=180°(n-1),故答案是:900°,180°(n-1);(3)过点O作SR∥AB,∵AB∥CD,∴SR∥CD,∴∠AM1O=∠M1OR同理∠CMnO=∠MnOR∴∠AM1O+∠CMnO=∠M1OR+∠MnOR,∴∠AM1O+∠CMnO=∠M1OMn=m°,∵M1O平分∠AM1M2,∴∠AM1M2=2∠AM1O,同理∠CMnMn-1=2∠CMnO,∴∠AM1M2+∠CMnMn-1=2∠AM1O+2∠CMnO=2∠M1OMn=2m°,又∵∠AM1M2+∠2+∠3+∠4+∠5+∠6+……+∠n-1+∠CMnMn-1=180°(n-1),∴∠2+∠3+∠4+∠5+∠6+…+∠n-1=(180n-180-2m)°点睛:本题考查了平行线的性质,角平分线的定义,解决此类题目,过拐点作平行线是解题的关键,准确识图理清图中各角度之间的关系也很重要.6.(1)①18°;②126°;③63°;(2)当x=18、36、54时,△ADB中有两个相等的角.【分析】(1)运用平行线的性质以及角平分线的定义,可得∠ABO的度数;根据∠ABO、∠BAD的度数解析:(1)①18°;②126°;③63°;(2)当x=18、36、54时,△ADB中有两个相等的角.【分析】(1)运用平行线的性质以及角平分线的定义,可得∠ABO的度数;根据∠ABO、∠BAD的度数以及△AOB的内角和,可得x的值;(2)根据三角形内角和定理以及直角的度数,可得x的值.【详解】解:(1)如图1,①∵∠MON=36°,OE平分∠MON,∴∠AOB=∠BON=18°,∵AB∥ON,∴∠ABO=18°;②当∠BAD=∠ABD时,∠BAD=18°,∵∠AOB+∠ABO+∠OAB=180°,∴∠OAC=180°-18°×3=126°;③当∠BAD=∠BDA时,∵∠ABO=18°,∴∠BAD=81°,∠AOB=18°,∵∠AOB+∠ABO+∠OAB=180°,∴∠OAC=180°-18°-18°-81°=63°,故答案为①18°;②126°;③63°;(2)如图2,存在这样的x的值,使得△ADB中有两个相等的角.∵AB⊥OM,∠MON=36°,OE平分∠MON,∴∠AOB=18°,∠ABO=72°,若∠BAD=∠ABD=72°,则∠OAC=90°-72°=18°;若∠BAD=∠BDA=(180°-72°)÷2=54°,则∠OAC=90°-54°=36°;若∠ADB=∠ABD=72°,则∠BAD=36°,故∠OAC=90°-36°=54°;综上所述,当x=18、36、54时,△ADB中有两个相等的角.【点睛】本题考查了三角形的内角和定理和三角形的外角性质的应用,三角形的内角和等于180°,三角形的一个外角等于和它不相邻的两个内角之和.利用角平分线的性质求出∠ABO的度数是关键,注意分类讨论思想的运用.7.(1)(2)(3)②是正确的,证明见解析【分析】(1)过点G作GE∥AB,然后利用平行线性质即可得到结果;(2)分别过G和H作GE∥AB,FH∥AB,然后利用平行线的性质得到对应的边角解析:(1)(2)(3)②是正确的,证明见解析【分析】(1)过点G作GE∥AB,然后利用平行线性质即可得到结果;(2)分别过G和H作GE∥AB,FH∥AB,然后利用平行线的性质得到对应的边角关系,进而∠MHN的具体值;(3)根据角平分线性质,设,然后利用平行线的基本性质,分别推导出和的值即可判断.【详解】(1)如图所示,过点作,∵,,∴,∴,,∴,∵,∴,∴.(2)如图所示,过点作,过点作,∵,∴,∴,,∴,∵,∴,∵平分,平分,∴,,∴,∵,∴,,∴.(3)如图所示,∵,∴,∵平分,∴,∴,∴,∵平分,∴,设,则,∴,∴,,∴②中的值为定值.故②是正确的.【点睛】本题主要考查了平行线的性质,做题的关键是能够找到辅助线,构造辅助线.8.(1)105,15;(2)旋转角的所有可能的度数是:15°,45°,105°,135°,150°;(3),保持不变;见解析【分析】(1)三角板ADE顺时针旋转后的三角板为,当时,,则可求得旋转角解析:(1)105,15;(2)旋转角的所有可能的度数是:15°,45°,105°,135°,150°;(3),保持不变;见解析【分析】(1)三角板ADE顺时针旋转后的三角板为,当时,,则可求得旋转角度;当∥BC时,,则可求得旋转角度;(2)分五种情况考虑:AD∥BC,DE∥AB,DE∥BC,DE∥AC,AE∥BC,即可分别求出旋转角;(3)设BD分别交、于点M、N,利用三角形的内外角的相等关系分别得出:及,由的内角和为180°,即可得出结论.【详解】(1)三角板ADE顺时针旋转后的三角板为,当时,如图,∵,∠EAD=45°∴即旋转角当时,如图,则∴=45°-30°=15°即旋转角°故答案为:105,15(2)当的一边与的某一边平行(不共线)时,有五种情况当AD∥BC时,由(1)知旋转角为15°;如图(1),当DE∥AB时,旋转角为45°;当DE∥BC时,由AD⊥DE,则有AD⊥BC,此时由(1)知,旋转角为105°;如图(2),当DE∥AC时,则旋转角为135°;如图(3),当AE∥BC时,则旋转角为150°;所以旋转角的所有可能的度数是:15°,45°,105°,135°,150°(3)当,,保持不变;理由如下:设BD分别交、于点M、N,如图在中,,,【点睛】本题考查了图形旋转的性质,三角形内角和定理,三角形的外角与不相邻的两个内角的相等关系等知识,注意旋转的三要素:旋转中心,旋转方向和旋转角度.9.(1)∠APB=∠NAP+∠HBP;(2)见解析;(3)∠HBP=∠NAP+∠APB【分析】(1)过P点作PQ∥GH,根据平行线的性质即可求解;(2)过P点作PQ∥GH,根据平行线的性质即可求解析:(1)∠APB=∠NAP+∠HBP;(2)见解析;(3)∠HBP=∠NAP+∠APB【分析】(1)过P点作PQ∥GH,根据平行线的性质即可求解;(2)过P点作PQ∥GH,根据平行线的性质即可求解;(3)根据平行线的性质和三角形外角的性质即可求解.【详解】解:(1)如图①,过P点作PQ∥GH,∵MN∥GH,∴MN∥PQ∥GH,∴∠APQ=∠NAP,∠BPQ=∠HBP,∵∠APB=∠APQ+∠BPQ,∴∠APB=∠NAP+∠HBP,故答案为:∠APB=∠NAP+∠HBP;(2)如图②,过P点作PQ∥GH,∵MN∥GH,∴MN∥PQ∥GH,∴∠APQ+∠NAP=180°,∠BPQ+∠HBP=180°,∵∠APB=∠APQ+∠BPQ,∴∠APB=(180°﹣∠NAP)+(180°﹣∠HBP)=360°﹣(∠NAP+∠HBP);(3)如备用图,∵MN∥GH,∴∠PEN=∠HBP,∵∠PEN=∠NAP+∠APB,∴∠HBP=∠NAP+∠APB.故答案为:∠HBP=∠NAP+∠APB.【点睛】此题考查了平行公理的推论:平行于同一条直线的两直线平行,以及平行线的性质:两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补,熟记定理是解题的关键.10.【探究1】∠2=∠ACB,90º-∠A;【探究2】∠BOC=90°﹣∠A,理由见解析;【应用】22.5°;【拓展】45°或36°.【分析】【探究1】根据角平分线的定义可得∠1=∠ABC,∠2=∠解析:【探究1】∠2=∠ACB,90º-∠A;【探究2】∠BOC=90°﹣∠A,理由见解析;【应用】22.5°;【拓展】45°或36°.【分析】【探究1】根据角平分线的定义可得∠1=∠ABC,∠2=∠ACB,根据三角形的内角和定理可得∠1+∠2=90º-∠A,再根据三角形的内角和定理即可得出结论;【探究2】如图2,由三角形的外角性质和角平分线的定义可得∠OBC=(∠A+∠ACB),∠OCB=(∠A+∠ABC),然后再根据三角形的内角和定理即可得出结论;【应用】延长AC与BD,设交点为G,如图5,由【探究1】的结论可得∠G的度数,于是可得∠GCD+∠GDC的度数,然后根据角平分线的定义和角的和差可得∠1+∠2的度数,再根据三角形的内角和定理即可求出结果;【拓展】根据角平分线的定义和平角的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 生物信息学分析IBD癌变的关键调控基因
- 保险行业数据分析师的答案解析
- 物业管理师国家职业资格考试复习含答案
- 深度解析(2026)《GBT 19448.3-2004圆柱柄刀夹 第3部分装径向矩形车刀的B型刀夹》
- 深度解析(2026)《GBT 19375-2003利木赞种牛》
- 办公室文员工作考核标准及办法
- 瓣膜介入器械的麻醉配合策略
- 环保组织招聘环保项目活动策划与执行专员面试题及答案
- 网络安全专家面试题及攻防实战案例含答案
- 剪床项目可行性分析报告范文(总投资7000万元)
- 施工升降机联合验收表
- 《活法》心得体会
- 赣南师范大学《中国地理》2022-2023学年第一学期期末试卷
- 兴业银行还款合同模板
- 基于机器学习的房性心动过速射频消融预测模型
- GB/T 44239-2024增材制造用铝合金粉
- 温泉洗浴中心管理手册样本
- 工业固废运输处置投标方案(技术标)
- 泰文租房合同
- 《机械制图》期末考试题库388题(含答案)
- 培训费收款收据模板
评论
0/150
提交评论