2025年欧洲储能部署概况报告(英文版)-欧盟委员会_第1页
2025年欧洲储能部署概况报告(英文版)-欧盟委员会_第2页
2025年欧洲储能部署概况报告(英文版)-欧盟委员会_第3页
2025年欧洲储能部署概况报告(英文版)-欧盟委员会_第4页
2025年欧洲储能部署概况报告(英文版)-欧盟委员会_第5页
已阅读5页,还剩108页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

JointResearchCentre

OverviewofEnergyStorage

DeploymentinEurope

Ananalysisofcurrentstatusandpolicyframeworkonenergystorage

GonzalezCuenca,M.I.

2025

ThisdocumentisapublicationbytheJointResearchCentre(JRC),theEuropeanCommission’sscienceandknowledgeservice.Itaimstoprovideevidence-basedscientificsupporttotheEuropeanpolicymakingprocess.ThecontentsofthispublicationdonotnecessarilyreflectthepositionoropinionoftheEuropeanCommission.NeithertheEuropean

CommissionnoranypersonactingonbehalfoftheCommissionisresponsiblefortheusethatmightbemadeofthispublication.ForinformationonthemethodologyandqualityunderlyingthedatausedinthispublicationforwhichthesourceisneitherEurostatnorotherCommissionservices,usersshouldcontactthereferencedsource.ThedesignationsemployedandthepresentationofmaterialonthemapsdonotimplytheexpressionofanyopinionwhatsoeveronthepartoftheEuropeanUnionconcerningthelegalstatusofanycountry,territory,cityorareaorofitsauthorities,or

concerningthedelimitationofitsfrontiersorboundaries.

Contactinformation

Name:GonzálezCuenca,MaríaIsabel

Email:isabel.gonzalez-cuenca@ec.europa.eu

TheJointResearchCentre:EUScienceHub

https://joint-research-centre.ec.europa.eu

JRC141463

EUR40482

PDFISBN978-92-68-32277-2ISSN1831-9424doi:10.2760/3846606KJ-01-25-509-EN-N

Luxembourg:PublicationsOfficeoftheEuropeanUnion,2025

©EuropeanUnion,2025

BY

ThereusepolicyoftheEuropeanCommissiondocumentsisimplementedbytheCommissionDecision2011/833/EUof12December2011onthereuseofCommissiondocuments(OJL330,14.12.2011,p.39).Unlessotherwisenoted,thereuseofthisdocumentisauthorisedundertheCreativeCommonsAttribution4.0International(CCBY4.0)licence

(/licenses/by/4.0/

).Thismeansthatreuseisallowedprovidedappropriatecreditisgivenandanychangesareindicated.

ForanyuseorreproductionofphotosorothermaterialthatisnotownedbytheEuropeanUnionpermissionmustbesoughtdirectlyfromthecopyrightholders.

Howtocitethisreport:GonzalezCuenca,M.I.,OverviewofEnergyStorageDeploymentinEurope-Ananalysisofcurrentstatusandpolicyframeworkonenergystorage,PublicationsOfficeoftheEuropeanUnion,Luxembourg,2025,

https://data.europa.eu/doi/10.2760/3846606

,JRC141463.

1

Contents

Abstract 5

Acknowledgements 6

Executivesummary 7

1.Introduction 10

2.Progressinenergystoragedeployment 11

2.1.Analysisbystatus 11

2.2.Analysisbycountry 12

2.3.Analysisbyenergystoragetechnology 13

2.3.1.Classificationoftechnologies 13

2.3.2.Mechanical 17

.Pumped-storagehydropower 17

.Compressed-airenergystorage 21

2.3.3.Electrochemical 22

2.3.4.Electrical 27

2.3.5.Chemical 28

2.3.6.Thermal 31

2.4.Analysisbyenergystorageservice 34

3.PolicyandregulatoryframeworkintheEuropeanUnion 38

3.1.Background 38

3.1.1.Directive(EU)2019/944:commonrulesfortheinternalmarketforelectricity 38

3.1.2.Regulation(EU)2019/943:internalmarketforelectricity 39

3.1.3.Regulation(EU)2019/941:riskpreparedness 39

3.1.4.Regulation(EU)No1227/2011:wholesaleenergymarketintegrityandtransparency

39

3.2.Electricitymarketreform 40

3.2.1.Directive(EU)2024/1711 40

3.2.2.Regulation(EU)2024/1747 40

3.3.KeyEuropeanUnionpolicyupdatesrelatedtoenergystorage 41

3.4.Nationalenergyandclimateplansandthestoragesystems 42

4.Currentsituationofthemarket 45

4.1.Theevolutionofrenewableenergysourcesystemswithstorage 45

2

4.2.Technologycostforecasts 46

4.3.Energydensityalsoaffectsprices 49

4.4.SupportingthedevelopmentoftheEuropeanmarket:projectsofcommoninterest 50

5.Casestudiesofenergystorageimplementation 53

5.1.TheauctionsofGreece 53

5.1.1.Howtheauctionswork 53

5.1.2.Resultsoftheauctions 53

5.1.3.Conclusionsandlessonslearned 54

5.2.Long-durationenergystorageinGermany 54

5.2.1.Consultation 54

5.2.2.Conclusionsandlessonslearned 55

5.3.ImpactofstorageontheUKmarket 55

5.3.1.Description 55

5.3.2.Bigprojectpipeline 56

5.3.3.Conclusionsandlessonslearned 57

5.4.PumpedhydrointheIberianpeninsula 57

5.4.1.DescriptionoftheIberianpeninsulapowersystem 57

5.4.2.Hydropowerbehaviour 58

5.4.3.Conclusionsandlessonslearned 59

6.Conclusions 60

References 61

Listofabbreviationsanddefinitions 65

Listoffigures 67

Listoftables 69

3

Abstract

Energystoragetechnologiesarecrucialforasecure,resilientandlow-carbonenergysystem,but

theirimplementationishinderedbyarangeofchallenges.Thisreportprovidesananalysisofthe

deploymentofenergystoragetechnologiesinEurope,identifyingthecurrentstatusandthepolicyframework.Keyfindingshighlightthegrowingexpectationsoflithiumionbatterystorage,the

continuedimportanceofpumped-storagehydropowerandthesignificantpotentialofenergy

storagetosupporttheintegrationofrenewableenergysources.CasestudiesfromGermany,

Greece,theIberianpeninsulaandtheUnitedKingdomillustratesuccessfulpoliciesandbest

practices.ThereportprovidesacomprehensiveoverviewoftheenergystoragelandscapeinEurope,highlightingkeyinsightsforpolicymakersandindustrystakeholders.

4

Acknowledgements

WewouldliketothanktheEuropeanenergystorageinventoryteamfortheireffortsincreatingaclimateofcollaborationandenrichment.WeareverygratefulfortheoutstandingworkdevelopedbytheITteamoftheJointResearchCentreinSevilleinconsolidatingandvisualisingdataon

energystorageprojects.

Author

MariaIsabelGonzálezCuenca

5

Executivesummary

ThisreportisintheframeworkofanadministrativeagreementwiththeDirectorate-Generalfor

EnergywiththeobjectiveofdevelopingtheEuropeanenergystorageinventory[1],aplatform

designedtomapandmonitortheenergystoragefacilitiesacrossEurope,shownin

Figure1.

Theplatformenablessystematictrackingofdeploymentstatus,technologiesandprojectdevelopments.

Thereportalsoprovidesadetailedoverviewofthetechnologies,withanemphasisonthosethat

havethelargestnumbersofoperationalfacilitiesandplannedinstallations.Itincludesassessmentsoftechnologymaturityandfuturetrends,andanalysestheevolvingpolicyandregulatorycontext.

Figure1.GeographicaldistributionofenergystorageprojectsinEurope(left)andinsouth-eastEurope(right)

Source:Europeanenergystorageinventory[1].

Policycontext

Energystoragesystemsarekeyenablersoftheenergytransition.Theysupporttheintegrationofrenewableenergysources,contributetogridstabilityandimprovetheoverallqualityandsecurityofenergysupply.TheEUhasintroducedmultipledirectivesandinitiativesaimedatfacilitatingtheroll-outofenergystoragesystems.

ThisreportoutlinestheEU-levelregulatoryframeworkandpolicydriversforstorageandevaluatestheadoptionofstoragepoliciesortargetsbyEUMemberStatesintheirnationalenergyand

climateplans(NECPs).Deliveredtogetherwiththemonitoringplatform,thereportalsoservesasareferencetoolforpolicymakersandstakeholderstodesignandrefineenergystoragestrategies.

Keyconclusions

Atotalof2356energystorageprojectshavebeenidentified,withacombinedpowerof

170.92GW.Ofthese:

—70GWareoperational;

—97.26GWareexpectedtobeonlineby2030;

—3.66GWarecurrentlyinactive.

Takingintoaccounttheseamountsofoperationalandexpectedpower,wecanaffirmthatEuropeisatapivotalstageinthedeploymentofenergystoragesystems.

6

Thereportoffersatechnologyclassificationofenergystoragesystems.Pumped-storage

hydropowercontinuestodominatetheinstalledpower,whilelithiumionbatterysystemsarerapidlyemergingastheleadingtechnologyinupcominginstallations.Theseexpectedinstallationshighlightgrowingmarketconfidenceinbatteriesasflexibleandscalablesolutionsforrenewableenergyintegration.

Energystorageisessentialforachievingzero-carbonpowersystems.ThereareseveralpoliciesandinitiativesledbytheEUtoacceleratetheenergystorageinstallations.Inparticular,twoupcomingpolicymeasuresareexpectedtohavesignificantinfluence.

—By2025,anewmethodologywillrequiretransmissionsystemoperatorsanddistributionsystemoperatorstoassessnationalflexibilityneeds,includingenergystorage

requirements,helpingtoshapelong-terminvestmentandplanning.

—ByFebruary2027,allenergystoragebatteriesover2kWhmustbeelectronicallyregisteredundernewEUlegislation,supportingtransparency,safetyandlife-cycletraceability.

RegardingtheimplementationofpoliciesbytheMemberStates,thisreportpresentsasummaryoftheassessmentoftheNECPsfocusedonenergystorage.Itisbasedontheassessmentofthe

NECPspublishedbytheCommissionon28May2025[2],whichisaccompaniedbyastaffworkingdocumentwithindividualassessmentsof23finalupdatedNECPsthathavebeensubmittedandevaluated[3].

Mainfindings

Energystorageprojectsspanmultiplelife-cyclestages,asshownin

Figure2.

Amajorroll-outofstoragetechnologies,particularlybatteries,isexpectedinthenextfiveyears.Decliningcapital

expenditure(CAPEX)andimprovedmarketconditionsareenhancingprofitability,creatingafavourableenvironmentforinvestment.

Figure2.NumberofstorageprojectsinEurope,bystatus

Source:Europeanenergystorageinventory[1].

7

ThisreportincludescasestudiesfromGreece,Germany,theIberianpeninsulaandtheUnitedKingdom,offeringinsightsintonationalpolicyframeworks,auctionmechanismsand

implementationstrategies.

TheevaluationoftheNCEPspublishedon28May2025includes23MemberStates.ConsideringtheresultspublishedandanalysingthembytheJointResearchCentre(JRC),

Figure3

showsthenumberofMemberStatesincorporatingenergystorageintheirplans(6)andthosethatincludeenergystoragepoliciesbutwithoutspecifictargets(17).

Figure3.NumberofNCEPsincludingenergystoragetargetsorpolicies

Withstoragetargets

Detailsinstoragepolicies

Notincludedintheassessment

05101520

Source:JRC,basedonEuropeanCommission[2].

RelatedandfutureJointResearchCentrework

TheJRCcontinuestosupportEurope’stransitiontoaresilientandcarbon-neutralenergysystem.Thisreportispartofabroaderinitiativetomaintainapubliclyaccessibleplatformtrackingthedeploymentofstoragetechnologies,providingactionabledatatosupportevidence-based

policymaking.

8

1.Introduction

TheEuropeanGreenDealsetsambitioustargets:a55%reductioningreenhousegas(GHG)

emissionsby2030(comparedwith1990levels),climateneutralityby2050,andtheestablishmentofaresource-efficienteconomy.Achievingthesegoalsrequiresasignificantincreaseintheshareofrenewableenergysourcesintheenergymix.However,theinherentintermittencyofrenewablesintroduceschallengesforgridstability,underscoringtheneedforenhancedsystemflexibilityto

managefluctuationsinsupplyanddemand.

Energystorageplaysacriticalroleinaddressingthischallenge.Whetherdeployedasstandalone

unitsorinhybridconfigurations,energystoragesystemsenablethereliableintegrationof

renewableelectricityintothegrid.Inadditiontoprovidingflexibility,theyhelpmitigatepricevolatility,reducepeak-timeelectricitycostsandallowconsumerstooptimisetheirenergyuseinresponsetodynamicpricing.Energystoragealsosupportstheelectrificationofothersectors,

particularlytransportandbuildings.

AccordingtotheEuropeanenergystorageinventory,batterystoragesystemsareexpectedtoexperiencethemostsignificantgrowthacrossEurope.Thistrendisdrivenbytherapid

growthofrenewables,theexpansionofelectricmobility,supportivepolicyframeworksandcontinuoustechnologicalinnovation.

Theimplementationofenergystoragesolutionspresentsbothtechnicalchallengesandeconomicopportunities.Increasingly,investors,developersandutilitiesviewenergystorageasastrategicassetwithinEurope’sevolvingenergylandscape.Unlockingitsfullpotentialwillrequireinnovativebusinessmodelsandcross-sectoralstrategiestomaximisesystemvalue.

ThisreportaddressesthepolicychallengeofacceleratingthedeploymentofenergystoragesystemsintheEU.TheEuropeanCommissionhasissuedrecommendationsoutliningconcrete

actionsthatEUMemberStatescantaketopromotebroaderadoption[4].Whileroll-outhas

progressed,theenergystoragemarketremainssignificantlyunderutilised.Fallingcostsand

maturingtechnologiesareexpectedtofurtherdrivetheroll-outoflarge-scalestationarysystems.

TheobjectiveofthisreportistoprovideacomprehensiveoverviewofthestatusandpolicyframeworkforenergystorageinEurope.Itexaminestechnologicalprogressandoperationalandplannedfacilities,andcomparesdevelopmentsacrossMemberStates.

ThisreportisproducedunderanadministrativeagreementwiththeDirectorate-GeneralforEnergy.TheprimaryobjectiveoftheagreementisthedevelopmentoftheEuropeanenergystorage

inventoryplatform.DevelopedbytheJointResearchCentre(JRC),theplatformaggregatesrecentdatafromarangeofpublicandprivatesources.Drawingoninsightsfromtheplatform,thisreportprovidesacomprehensiveandup-to-dateanalysisoftheevolvingenergystoragelandscapeinEurope.

9

2.Progressinenergystoragedeployment

TheEuropeanenergystorageinventory[1]isaplatformdevelopedtomapandmonitortheenergystoragefacilitiesacrossEurope.Theinformationprovidedbytheplatformisusedinthissectiontopresenttheprogressinenergystoragedeployment.Theanalysisismadebystatuses,bycountries,bytechnologiesandbyservices.

2.1.Analysisbystatus

EnergystorageprojectsinEuroperepresent70GWofpoweralreadyoperational.However,thelifecycleofaprojecthasseveralstatusesbeforebecomingoperational,asshownin

Figure4.

Figure4.Statusconsideredinthedevelopmentofstoragefacilities

Source:JRC.

In

Figure5

thepowerofenergystorageprojectsthatareexpectedrepresents97.26GW(includingthoseannounced,awardedpermitsandunderconstruction),whiletheoperationalpoweris70GW.Thisquantityofpowerexpectedrepresentsaclearinterestinenergystorageprojects.

Figure5.PoweroftheprojectsinEurope,bystatus

Source:Europeanenergystorageinventory[1].

10

2.2.Analysisbycountry

BasedontheEuropeanenergystorageinventoryplatform,theassessmentofprojectsandfacilitiesincludesthefollowingcountries,representingbothMemberStatesandneighbouringcountries;

Austria,Belgium,BosniaandHerzegovina,Bulgaria,Croatia,Cyprus,Czechia,Denmark,Estonia,

Finland,France,Germany,Greece,Hungary,Ireland,Italy,Latvia,Lithuania,Luxembourg,Malta,theNetherlands,Norway,Poland,Portugal,Romania,Serbia,Slovakia,Slovenia,Spain,Sweden,

Switzerland,UkraineandtheUnitedKingdom

(Figure

6).

Figure6.CountriesconsideredintheEuropeanenergystorageinventory

Source:JRC.

Theinclusionofneighbouringcountriesisjustifiedbythecross-borderintegrationofenergysystemsandtherelevanceofsignificantdeployments,suchasthoseintheUnitedKingdom.

Accordingtothislistandintermsofthedistributionbycountries,the15countrieswiththehighestenergystoragepowerareshownin

Figure7.

11

Figure7.The15countrieswiththehighestenergystoragepower,bystatus

Source:Europeanenergystorageinventory[1].

2.3.Analysisbyenergystoragetechnology

2.3.1.Classificationoftechnologies

Theenergystoragemarkethastwomainsegments,differentiatedbythelocationoftheenergystoragesystems:

—behindthemeter,customer-sitedstationarystoragesystemsthatareconnectedtothedistributionsystemonthecustomer’ssideoftheutility’sservicemeter[5];

—frontofthemeter(FoM),energystoragesystemsinstalledonthegridside,typicallyutility-scalesystems[5],[6].

Thereisalsoaclassificationintermsofduration[7].

—Short-durationenergystorage(SDES)candischargeatfullpowerforuptoeighthours.Itencompassestechnologiesthatcaninstantlyincreasepoweroutput,therebysupportingsystemstabilityandbalancingsupplyanddemandacrossvarioustimeframes.

12

—Long-durationenergystorage(LDES)dispatchesenergyorheatforextendedperiodsof

time,rangingfrom8hourstodays,weeksorseasons.LDEStechnologiesareessentialforthedecarbonisationofenergysystems,includingthepowersystemandindustrialheat.

However,thetechnologiesoftheenergystoragesystemsaremainlyclassifieddependingontheirchargingprinciples.Wehaveanalysedthefollowingsourcesandtheclassificationsofenergy

storagetechnologiesshownin

Table1.

Table1.Sourcesofandoptionsfortheclassificationsofenergystoragetechnologies

Source

Numberof

main

technologies

Maintechnologies

Numberof

subtechnologies

WoodMackenzie[8]

5

Mechanical

Batteries

Electromagnetic

Thermal

Unspecified

45

Studyonenergy

storage,PublicationsOfficeoftheEuropeanUnion,2023[9]

6

Mechanical

ElectrochemicalThermal

ChemicalUndefinedHybrid

29

CleanEnergy

TechnologyObservatoryreports[10]-[13]

3

Mechanical

Electromagnetic

Thermal

25

S&PGlobal[14]

4

Mechanical

ElectrochemicalThermal

Other

19

EuropeanAssociationforStorageof

Energy[15]

5

Mechanical

ElectrochemicalThermal

Chemical

Electrical

33

Ricardo[16]

4

Mechanical

ElectrochemicalChemical

Electrical

10

Source.JRC,basedonthesourcesmentioned.

13

Consideringtheseapproaches,inthisreportweproposeaclassificationoftheenergystorage

technologieswithfivemaincategories:mechanical,electrochemical(orbatteries),thermal,chemicalandelectrical,asindicatedin

Table2.

Forthecategoryelectricaltherearenotanyfacilitieswitharelevantpowerlinkedtothegrid.Therefore,theelectricaltechnologyisnotincludedintheEuropeanenergystorageinventory.

Table2.Classificationsofenergystoragetechnologies

Technology

Subtechnologies

Mechanical

Pumped-storagehydropower

Compressed-airenergystorage

Flywheels

Liquidairenergystorage(*)

Electrochemical

Ironairbattery

Leadacidbatteries

Lithiumionbatteries

Lithium-otherbatteriesRedoxflowbatteries

Sodiumsulphurbatteries

Sodiumnickelchloridebatteries

Thermal

Latentthermalenergystorage(*)

Thermochemicalstorage(*)

Sensiblethermalenergystorage

Chemical

Powertoammonia(*)

Powertogas-hydrogen

Powertomethanol(*)

Powertomethane(*)

Electrical

Supercapacitors(*)

Superconductingmagneticenergystorage(*)

(*)SubtechnologieswithoutprojectsintheEuropeanenergystorageinventory.

Source.JRC.

Intermsofthisclassificationoftechnologies,thetotalstoragepowerbystatusisshownin

Figure

8.

14

Figure8.Distributionofpower,bystoragetechnologyandbystatus

Source:Europeanenergystorageinventory[1].

Consideringjusttheoperationalpower,thedistributionisshownin

Figure9.

Figure9.Distributionofoperationalpower,bystoragetechnology

Source:Europeanenergystorageinventory[1].

Mechanicaltechnologiespredominateduetothematurityandwidespreaddeploymentofpumped-storagehydropowersystems.

However,forprojectsthatarenotyetoperationalbutareinearlierstages(e.g.announced,

permitted,orunderconstruction),thedominanttechnologyiselectrochemical:primarilylithiumionbatteries.Thepowerexpectedisshownin

Figure10.

15

Figure10.Distributionofexpectedpower,bystoragetechnology

Source:Europeanenergystorageinventory[1].

2.3.2.Mechanical

Weanalysetwotypesofmechanicalstoragethatarematureandoperational:

—pumped-storagehydropower

—compressed-airenergystorage(CAES).

.Pumped-storagehydropower

Keyaspectsandprinciples

Theprincipleofpumped-storagehydropower(PSH)isarenewableenergysourcethatconvertsthehydraulic(water)power(potentialandkineticpower)intomechanicalpowerbymeansofarotatingturbine,andintoelectricitythroughtheconnectiontoanelectricgenerator[10].

Figure11.ChargingprincipleofPSH

Source:EuropeanAssociationforStorageofEnergy(EASE).

Themaincomponentsarethefollowing:

16

—twowaterreservoirs/ponds(upperandlower),

—powerwaterwaytoconnectthereservoirs/ponds,

—hydropowerstationequippedwithternarymachinesetsorpump-turbines.DeploymentinEurope

PSHisthemostmaturestorageconceptinrespectofinstalledcapacity,andaquarteroftheglobalinstalledcapacityisintheEU[10].

Theassessmentismadeintermsofpower(GW)becausethereliabilityofthedataishigher.In

Figure12

thePSHpowerispresentedbystatus.

Figure12.PowerinPSHtechnology,bystatus

Source:Europeanenergystorageinventory[1].

Periodofcommissioning

Sincethistechnologyisalreadymatureandhasbeendeployedsincethebeginningofthe20thcentury,

Figure13

showsthedecadesinwhichprojectsusingthistechnologywereinstalled,consideringonlytheprojectsstilloperational.ThedecadeinwhichthelargestnumberofPSHprojectswerecommissionedwasthe1980s.

17

Figure13.NumberofnewPSHprojectsinstalledinEurope,bydecade

140

Numberofprojects

120

100

80

60

40

20

0

1950s1960s1970s1980s1990s2000s2010s2020s

Before50s

Source:Europeanenergystorageinventory[1].

Installationsbycountry

Thenumberofprojectsconcerningthistechnologydependsonthenaturalresourcesavailableandthegeographyofthecountry.In

Figure14,

weshowthe15countrieswiththemostoperationalpower,inorder.

18

Figure14.The15countrieswiththegreatestamountsofPSHoperationalpower

Source.Europeanenergystorageinventory[1].

Withthecommontargetof20%renewableenergyuseby2020and42.5%by2030,many

MemberStateshaveintroducedeconomicsupportprogrammesforrenewablegeneration.Inthis

context,PSHsystemscouldfacilitatetheirexpansion.Thenewprojectsexpectedarelocatedinninecountries,whichareshownin

Figure15.

19

Figure15.The9countrieswithexpectedPSHpower,bystatus

Source.Europeanenergystorageinventory[1].

.Compressed-airenergystorage

Keyaspectsandprinciples

CAESencompassestwoprimarysubtechnologies:

—diabaticcompressed-airenergystorage(D-CAES)

—adiabaticcompressed-airenergystorage(A-CAES).

D-CAESinvolvescompressingairintoundergroundgeologicalformations,suchassaltcaverns,

usingexcesselectricity,andthenheatingthereleasedairwithnaturalgasorfueltodriveagas

turbineandgenerateelectricitywhenneeded.Incontrast,A-CAESstorestheheatgeneratedduringthecompressioncycleusingthermalenergystorage(TES),allowingforamoreefficientandcleanerprocess,asthecompressedairisexpandedinaturbinetoproduceelectricitywhilerecoveringthe

storedheat,thuseliminatingtheneedforadditionalfuelcombustion.

20

Figure16.ChargingprinciplesofCAESsystems‘D-CAES’(left)and‘A-CAES’(right).

Source:EASE.

Themaincomponentsarethefollowing:

—compressordrivenbyanelectricmotor,

—airstorage-saltcavern,hardrockcavern,depletedgasfieldoraquifer,

—turbine,

—generator,

—fuel/gascombustionsystemtopreheatthereleasedairforD-CAES,orTESsystemforA-CAES.

DeploymentinEurope

TherearethreeoperationalprojectsinEuropeusingtheD-CAESsubtechnology.Theoldest,andtheonewiththehighestcapacity,istheHuntorfplantinGermany,commissionedin1978.Ituses

naturalgasasaheatsourceforthedischargingprocess.A-CAESsystemsareintheprocessofdemonstrationandarenotyetcommerciallyavailable.

2.3.3.Electrochemical

Keyaspectsandprinciples

Electrochemicalisthetechnologythathasbeendeployedmostinrecentyears,andseveralbatterytechnologiesmaybeincludedinthiscategory.

Thedominatingbatterytechnologyislithiumion(lithiumironphosphate(LFP),nickelmanganesecobaltoxide(NMC)andnickelcobaltaluminiumoxide).Inthefuture,lithiumionwillstill

predominate,buttherewillbeashifttolow-orzero-cobaltchemistries(LFP,lithiummanganeseironphosphate,amongothers).Theroleofsodiumionbatteriesandotheradvancedtechnologieswillincreasesignificantly[12].

Alithiumionbatterysystemisanenergystoragesystembasedonelectrochemical

charge/dischargereactionsthatoccurbetweenapositiveelectrode(cathode)thatcontainssomelithiatedmetaloxideandanegativeelectrode(anode)thatismadeofcarbonmaterialor

intercalationcompounds,amongotheroptions.Theelectrodesareseparatedbyporouspolymericmaterialsthatallowforelectronandionicflowbetweenthem,andareimmersedinanelectrolytethatismadeupoflithiumsaltsdissolvedinorganicliquids.

21

Whenthebatteryisbeingcharged,thelithiumatomsinthecathodebecomeionsandmigrate

throughtheelectrolytetowardsthecarbonanode,wheretheycombinewithexternalelectronsandaredepositedbetweencarbonlayersaslithiumatoms(Figure17).Thisprocessisreversedduringdischarge.

Themaincomponentsarethefollowing:

—elementarycellcomposedofanassemblyofelectrodes,electrolyteandseparators,

—modulescomposedofserialorparallelassemblingofcells,

—batterysystemscomposedofalargeassemblyofmodules,abatterymanagementsystemandathermalmanagementsystem,

—powerconversionsystem.

Figure18.Chargingprinciplesoflithiumionbatteries

NB:SEI:solidelectrolyteinterphase

Source:EASE.

DeploymentinEurope

AsshowninFigure19,theelectrochemicalprojectsexpectedrepresent84.72GWofpower,showingthatinstallationsofnewprojectswillcontinue.

22

Figure19.Powerinelectrochemicaltechnology,bystatus

Source:Europeanenergystorage

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论