版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
JointResearchCentre
OverviewofEnergyStorage
DeploymentinEurope
Ananalysisofcurrentstatusandpolicyframeworkonenergystorage
GonzalezCuenca,M.I.
2025
ThisdocumentisapublicationbytheJointResearchCentre(JRC),theEuropeanCommission’sscienceandknowledgeservice.Itaimstoprovideevidence-basedscientificsupporttotheEuropeanpolicymakingprocess.ThecontentsofthispublicationdonotnecessarilyreflectthepositionoropinionoftheEuropeanCommission.NeithertheEuropean
CommissionnoranypersonactingonbehalfoftheCommissionisresponsiblefortheusethatmightbemadeofthispublication.ForinformationonthemethodologyandqualityunderlyingthedatausedinthispublicationforwhichthesourceisneitherEurostatnorotherCommissionservices,usersshouldcontactthereferencedsource.ThedesignationsemployedandthepresentationofmaterialonthemapsdonotimplytheexpressionofanyopinionwhatsoeveronthepartoftheEuropeanUnionconcerningthelegalstatusofanycountry,territory,cityorareaorofitsauthorities,or
concerningthedelimitationofitsfrontiersorboundaries.
Contactinformation
Name:GonzálezCuenca,MaríaIsabel
Email:isabel.gonzalez-cuenca@ec.europa.eu
TheJointResearchCentre:EUScienceHub
https://joint-research-centre.ec.europa.eu
JRC141463
EUR40482
PDFISBN978-92-68-32277-2ISSN1831-9424doi:10.2760/3846606KJ-01-25-509-EN-N
Luxembourg:PublicationsOfficeoftheEuropeanUnion,2025
©EuropeanUnion,2025
BY
ThereusepolicyoftheEuropeanCommissiondocumentsisimplementedbytheCommissionDecision2011/833/EUof12December2011onthereuseofCommissiondocuments(OJL330,14.12.2011,p.39).Unlessotherwisenoted,thereuseofthisdocumentisauthorisedundertheCreativeCommonsAttribution4.0International(CCBY4.0)licence
(/licenses/by/4.0/
).Thismeansthatreuseisallowedprovidedappropriatecreditisgivenandanychangesareindicated.
ForanyuseorreproductionofphotosorothermaterialthatisnotownedbytheEuropeanUnionpermissionmustbesoughtdirectlyfromthecopyrightholders.
Howtocitethisreport:GonzalezCuenca,M.I.,OverviewofEnergyStorageDeploymentinEurope-Ananalysisofcurrentstatusandpolicyframeworkonenergystorage,PublicationsOfficeoftheEuropeanUnion,Luxembourg,2025,
https://data.europa.eu/doi/10.2760/3846606
,JRC141463.
1
Contents
Abstract 5
Acknowledgements 6
Executivesummary 7
1.Introduction 10
2.Progressinenergystoragedeployment 11
2.1.Analysisbystatus 11
2.2.Analysisbycountry 12
2.3.Analysisbyenergystoragetechnology 13
2.3.1.Classificationoftechnologies 13
2.3.2.Mechanical 17
.Pumped-storagehydropower 17
.Compressed-airenergystorage 21
2.3.3.Electrochemical 22
2.3.4.Electrical 27
2.3.5.Chemical 28
2.3.6.Thermal 31
2.4.Analysisbyenergystorageservice 34
3.PolicyandregulatoryframeworkintheEuropeanUnion 38
3.1.Background 38
3.1.1.Directive(EU)2019/944:commonrulesfortheinternalmarketforelectricity 38
3.1.2.Regulation(EU)2019/943:internalmarketforelectricity 39
3.1.3.Regulation(EU)2019/941:riskpreparedness 39
3.1.4.Regulation(EU)No1227/2011:wholesaleenergymarketintegrityandtransparency
39
3.2.Electricitymarketreform 40
3.2.1.Directive(EU)2024/1711 40
3.2.2.Regulation(EU)2024/1747 40
3.3.KeyEuropeanUnionpolicyupdatesrelatedtoenergystorage 41
3.4.Nationalenergyandclimateplansandthestoragesystems 42
4.Currentsituationofthemarket 45
4.1.Theevolutionofrenewableenergysourcesystemswithstorage 45
2
4.2.Technologycostforecasts 46
4.3.Energydensityalsoaffectsprices 49
4.4.SupportingthedevelopmentoftheEuropeanmarket:projectsofcommoninterest 50
5.Casestudiesofenergystorageimplementation 53
5.1.TheauctionsofGreece 53
5.1.1.Howtheauctionswork 53
5.1.2.Resultsoftheauctions 53
5.1.3.Conclusionsandlessonslearned 54
5.2.Long-durationenergystorageinGermany 54
5.2.1.Consultation 54
5.2.2.Conclusionsandlessonslearned 55
5.3.ImpactofstorageontheUKmarket 55
5.3.1.Description 55
5.3.2.Bigprojectpipeline 56
5.3.3.Conclusionsandlessonslearned 57
5.4.PumpedhydrointheIberianpeninsula 57
5.4.1.DescriptionoftheIberianpeninsulapowersystem 57
5.4.2.Hydropowerbehaviour 58
5.4.3.Conclusionsandlessonslearned 59
6.Conclusions 60
References 61
Listofabbreviationsanddefinitions 65
Listoffigures 67
Listoftables 69
3
Abstract
Energystoragetechnologiesarecrucialforasecure,resilientandlow-carbonenergysystem,but
theirimplementationishinderedbyarangeofchallenges.Thisreportprovidesananalysisofthe
deploymentofenergystoragetechnologiesinEurope,identifyingthecurrentstatusandthepolicyframework.Keyfindingshighlightthegrowingexpectationsoflithiumionbatterystorage,the
continuedimportanceofpumped-storagehydropowerandthesignificantpotentialofenergy
storagetosupporttheintegrationofrenewableenergysources.CasestudiesfromGermany,
Greece,theIberianpeninsulaandtheUnitedKingdomillustratesuccessfulpoliciesandbest
practices.ThereportprovidesacomprehensiveoverviewoftheenergystoragelandscapeinEurope,highlightingkeyinsightsforpolicymakersandindustrystakeholders.
4
Acknowledgements
WewouldliketothanktheEuropeanenergystorageinventoryteamfortheireffortsincreatingaclimateofcollaborationandenrichment.WeareverygratefulfortheoutstandingworkdevelopedbytheITteamoftheJointResearchCentreinSevilleinconsolidatingandvisualisingdataon
energystorageprojects.
Author
MariaIsabelGonzálezCuenca
5
Executivesummary
ThisreportisintheframeworkofanadministrativeagreementwiththeDirectorate-Generalfor
EnergywiththeobjectiveofdevelopingtheEuropeanenergystorageinventory[1],aplatform
designedtomapandmonitortheenergystoragefacilitiesacrossEurope,shownin
Figure1.
Theplatformenablessystematictrackingofdeploymentstatus,technologiesandprojectdevelopments.
Thereportalsoprovidesadetailedoverviewofthetechnologies,withanemphasisonthosethat
havethelargestnumbersofoperationalfacilitiesandplannedinstallations.Itincludesassessmentsoftechnologymaturityandfuturetrends,andanalysestheevolvingpolicyandregulatorycontext.
Figure1.GeographicaldistributionofenergystorageprojectsinEurope(left)andinsouth-eastEurope(right)
Source:Europeanenergystorageinventory[1].
Policycontext
Energystoragesystemsarekeyenablersoftheenergytransition.Theysupporttheintegrationofrenewableenergysources,contributetogridstabilityandimprovetheoverallqualityandsecurityofenergysupply.TheEUhasintroducedmultipledirectivesandinitiativesaimedatfacilitatingtheroll-outofenergystoragesystems.
ThisreportoutlinestheEU-levelregulatoryframeworkandpolicydriversforstorageandevaluatestheadoptionofstoragepoliciesortargetsbyEUMemberStatesintheirnationalenergyand
climateplans(NECPs).Deliveredtogetherwiththemonitoringplatform,thereportalsoservesasareferencetoolforpolicymakersandstakeholderstodesignandrefineenergystoragestrategies.
Keyconclusions
Atotalof2356energystorageprojectshavebeenidentified,withacombinedpowerof
170.92GW.Ofthese:
—70GWareoperational;
—97.26GWareexpectedtobeonlineby2030;
—3.66GWarecurrentlyinactive.
Takingintoaccounttheseamountsofoperationalandexpectedpower,wecanaffirmthatEuropeisatapivotalstageinthedeploymentofenergystoragesystems.
6
Thereportoffersatechnologyclassificationofenergystoragesystems.Pumped-storage
hydropowercontinuestodominatetheinstalledpower,whilelithiumionbatterysystemsarerapidlyemergingastheleadingtechnologyinupcominginstallations.Theseexpectedinstallationshighlightgrowingmarketconfidenceinbatteriesasflexibleandscalablesolutionsforrenewableenergyintegration.
Energystorageisessentialforachievingzero-carbonpowersystems.ThereareseveralpoliciesandinitiativesledbytheEUtoacceleratetheenergystorageinstallations.Inparticular,twoupcomingpolicymeasuresareexpectedtohavesignificantinfluence.
—By2025,anewmethodologywillrequiretransmissionsystemoperatorsanddistributionsystemoperatorstoassessnationalflexibilityneeds,includingenergystorage
requirements,helpingtoshapelong-terminvestmentandplanning.
—ByFebruary2027,allenergystoragebatteriesover2kWhmustbeelectronicallyregisteredundernewEUlegislation,supportingtransparency,safetyandlife-cycletraceability.
RegardingtheimplementationofpoliciesbytheMemberStates,thisreportpresentsasummaryoftheassessmentoftheNECPsfocusedonenergystorage.Itisbasedontheassessmentofthe
NECPspublishedbytheCommissionon28May2025[2],whichisaccompaniedbyastaffworkingdocumentwithindividualassessmentsof23finalupdatedNECPsthathavebeensubmittedandevaluated[3].
Mainfindings
Energystorageprojectsspanmultiplelife-cyclestages,asshownin
Figure2.
Amajorroll-outofstoragetechnologies,particularlybatteries,isexpectedinthenextfiveyears.Decliningcapital
expenditure(CAPEX)andimprovedmarketconditionsareenhancingprofitability,creatingafavourableenvironmentforinvestment.
Figure2.NumberofstorageprojectsinEurope,bystatus
Source:Europeanenergystorageinventory[1].
7
ThisreportincludescasestudiesfromGreece,Germany,theIberianpeninsulaandtheUnitedKingdom,offeringinsightsintonationalpolicyframeworks,auctionmechanismsand
implementationstrategies.
TheevaluationoftheNCEPspublishedon28May2025includes23MemberStates.ConsideringtheresultspublishedandanalysingthembytheJointResearchCentre(JRC),
Figure3
showsthenumberofMemberStatesincorporatingenergystorageintheirplans(6)andthosethatincludeenergystoragepoliciesbutwithoutspecifictargets(17).
Figure3.NumberofNCEPsincludingenergystoragetargetsorpolicies
Withstoragetargets
Detailsinstoragepolicies
Notincludedintheassessment
05101520
Source:JRC,basedonEuropeanCommission[2].
RelatedandfutureJointResearchCentrework
TheJRCcontinuestosupportEurope’stransitiontoaresilientandcarbon-neutralenergysystem.Thisreportispartofabroaderinitiativetomaintainapubliclyaccessibleplatformtrackingthedeploymentofstoragetechnologies,providingactionabledatatosupportevidence-based
policymaking.
8
1.Introduction
TheEuropeanGreenDealsetsambitioustargets:a55%reductioningreenhousegas(GHG)
emissionsby2030(comparedwith1990levels),climateneutralityby2050,andtheestablishmentofaresource-efficienteconomy.Achievingthesegoalsrequiresasignificantincreaseintheshareofrenewableenergysourcesintheenergymix.However,theinherentintermittencyofrenewablesintroduceschallengesforgridstability,underscoringtheneedforenhancedsystemflexibilityto
managefluctuationsinsupplyanddemand.
Energystorageplaysacriticalroleinaddressingthischallenge.Whetherdeployedasstandalone
unitsorinhybridconfigurations,energystoragesystemsenablethereliableintegrationof
renewableelectricityintothegrid.Inadditiontoprovidingflexibility,theyhelpmitigatepricevolatility,reducepeak-timeelectricitycostsandallowconsumerstooptimisetheirenergyuseinresponsetodynamicpricing.Energystoragealsosupportstheelectrificationofothersectors,
particularlytransportandbuildings.
AccordingtotheEuropeanenergystorageinventory,batterystoragesystemsareexpectedtoexperiencethemostsignificantgrowthacrossEurope.Thistrendisdrivenbytherapid
growthofrenewables,theexpansionofelectricmobility,supportivepolicyframeworksandcontinuoustechnologicalinnovation.
Theimplementationofenergystoragesolutionspresentsbothtechnicalchallengesandeconomicopportunities.Increasingly,investors,developersandutilitiesviewenergystorageasastrategicassetwithinEurope’sevolvingenergylandscape.Unlockingitsfullpotentialwillrequireinnovativebusinessmodelsandcross-sectoralstrategiestomaximisesystemvalue.
ThisreportaddressesthepolicychallengeofacceleratingthedeploymentofenergystoragesystemsintheEU.TheEuropeanCommissionhasissuedrecommendationsoutliningconcrete
actionsthatEUMemberStatescantaketopromotebroaderadoption[4].Whileroll-outhas
progressed,theenergystoragemarketremainssignificantlyunderutilised.Fallingcostsand
maturingtechnologiesareexpectedtofurtherdrivetheroll-outoflarge-scalestationarysystems.
TheobjectiveofthisreportistoprovideacomprehensiveoverviewofthestatusandpolicyframeworkforenergystorageinEurope.Itexaminestechnologicalprogressandoperationalandplannedfacilities,andcomparesdevelopmentsacrossMemberStates.
ThisreportisproducedunderanadministrativeagreementwiththeDirectorate-GeneralforEnergy.TheprimaryobjectiveoftheagreementisthedevelopmentoftheEuropeanenergystorage
inventoryplatform.DevelopedbytheJointResearchCentre(JRC),theplatformaggregatesrecentdatafromarangeofpublicandprivatesources.Drawingoninsightsfromtheplatform,thisreportprovidesacomprehensiveandup-to-dateanalysisoftheevolvingenergystoragelandscapeinEurope.
9
2.Progressinenergystoragedeployment
TheEuropeanenergystorageinventory[1]isaplatformdevelopedtomapandmonitortheenergystoragefacilitiesacrossEurope.Theinformationprovidedbytheplatformisusedinthissectiontopresenttheprogressinenergystoragedeployment.Theanalysisismadebystatuses,bycountries,bytechnologiesandbyservices.
2.1.Analysisbystatus
EnergystorageprojectsinEuroperepresent70GWofpoweralreadyoperational.However,thelifecycleofaprojecthasseveralstatusesbeforebecomingoperational,asshownin
Figure4.
Figure4.Statusconsideredinthedevelopmentofstoragefacilities
Source:JRC.
In
Figure5
thepowerofenergystorageprojectsthatareexpectedrepresents97.26GW(includingthoseannounced,awardedpermitsandunderconstruction),whiletheoperationalpoweris70GW.Thisquantityofpowerexpectedrepresentsaclearinterestinenergystorageprojects.
Figure5.PoweroftheprojectsinEurope,bystatus
Source:Europeanenergystorageinventory[1].
10
2.2.Analysisbycountry
BasedontheEuropeanenergystorageinventoryplatform,theassessmentofprojectsandfacilitiesincludesthefollowingcountries,representingbothMemberStatesandneighbouringcountries;
Austria,Belgium,BosniaandHerzegovina,Bulgaria,Croatia,Cyprus,Czechia,Denmark,Estonia,
Finland,France,Germany,Greece,Hungary,Ireland,Italy,Latvia,Lithuania,Luxembourg,Malta,theNetherlands,Norway,Poland,Portugal,Romania,Serbia,Slovakia,Slovenia,Spain,Sweden,
Switzerland,UkraineandtheUnitedKingdom
(Figure
6).
Figure6.CountriesconsideredintheEuropeanenergystorageinventory
Source:JRC.
Theinclusionofneighbouringcountriesisjustifiedbythecross-borderintegrationofenergysystemsandtherelevanceofsignificantdeployments,suchasthoseintheUnitedKingdom.
Accordingtothislistandintermsofthedistributionbycountries,the15countrieswiththehighestenergystoragepowerareshownin
Figure7.
11
Figure7.The15countrieswiththehighestenergystoragepower,bystatus
Source:Europeanenergystorageinventory[1].
2.3.Analysisbyenergystoragetechnology
2.3.1.Classificationoftechnologies
Theenergystoragemarkethastwomainsegments,differentiatedbythelocationoftheenergystoragesystems:
—behindthemeter,customer-sitedstationarystoragesystemsthatareconnectedtothedistributionsystemonthecustomer’ssideoftheutility’sservicemeter[5];
—frontofthemeter(FoM),energystoragesystemsinstalledonthegridside,typicallyutility-scalesystems[5],[6].
Thereisalsoaclassificationintermsofduration[7].
—Short-durationenergystorage(SDES)candischargeatfullpowerforuptoeighthours.Itencompassestechnologiesthatcaninstantlyincreasepoweroutput,therebysupportingsystemstabilityandbalancingsupplyanddemandacrossvarioustimeframes.
12
—Long-durationenergystorage(LDES)dispatchesenergyorheatforextendedperiodsof
time,rangingfrom8hourstodays,weeksorseasons.LDEStechnologiesareessentialforthedecarbonisationofenergysystems,includingthepowersystemandindustrialheat.
However,thetechnologiesoftheenergystoragesystemsaremainlyclassifieddependingontheirchargingprinciples.Wehaveanalysedthefollowingsourcesandtheclassificationsofenergy
storagetechnologiesshownin
Table1.
Table1.Sourcesofandoptionsfortheclassificationsofenergystoragetechnologies
Source
Numberof
main
technologies
Maintechnologies
Numberof
subtechnologies
WoodMackenzie[8]
5
Mechanical
Batteries
Electromagnetic
Thermal
Unspecified
45
Studyonenergy
storage,PublicationsOfficeoftheEuropeanUnion,2023[9]
6
Mechanical
ElectrochemicalThermal
ChemicalUndefinedHybrid
29
CleanEnergy
TechnologyObservatoryreports[10]-[13]
3
Mechanical
Electromagnetic
Thermal
25
S&PGlobal[14]
4
Mechanical
ElectrochemicalThermal
Other
19
EuropeanAssociationforStorageof
Energy[15]
5
Mechanical
ElectrochemicalThermal
Chemical
Electrical
33
Ricardo[16]
4
Mechanical
ElectrochemicalChemical
Electrical
10
Source.JRC,basedonthesourcesmentioned.
13
Consideringtheseapproaches,inthisreportweproposeaclassificationoftheenergystorage
technologieswithfivemaincategories:mechanical,electrochemical(orbatteries),thermal,chemicalandelectrical,asindicatedin
Table2.
Forthecategoryelectricaltherearenotanyfacilitieswitharelevantpowerlinkedtothegrid.Therefore,theelectricaltechnologyisnotincludedintheEuropeanenergystorageinventory.
Table2.Classificationsofenergystoragetechnologies
Technology
Subtechnologies
Mechanical
Pumped-storagehydropower
Compressed-airenergystorage
Flywheels
Liquidairenergystorage(*)
Electrochemical
Ironairbattery
Leadacidbatteries
Lithiumionbatteries
Lithium-otherbatteriesRedoxflowbatteries
Sodiumsulphurbatteries
Sodiumnickelchloridebatteries
Thermal
Latentthermalenergystorage(*)
Thermochemicalstorage(*)
Sensiblethermalenergystorage
Chemical
Powertoammonia(*)
Powertogas-hydrogen
Powertomethanol(*)
Powertomethane(*)
Electrical
Supercapacitors(*)
Superconductingmagneticenergystorage(*)
(*)SubtechnologieswithoutprojectsintheEuropeanenergystorageinventory.
Source.JRC.
Intermsofthisclassificationoftechnologies,thetotalstoragepowerbystatusisshownin
Figure
8.
14
Figure8.Distributionofpower,bystoragetechnologyandbystatus
Source:Europeanenergystorageinventory[1].
Consideringjusttheoperationalpower,thedistributionisshownin
Figure9.
Figure9.Distributionofoperationalpower,bystoragetechnology
Source:Europeanenergystorageinventory[1].
Mechanicaltechnologiespredominateduetothematurityandwidespreaddeploymentofpumped-storagehydropowersystems.
However,forprojectsthatarenotyetoperationalbutareinearlierstages(e.g.announced,
permitted,orunderconstruction),thedominanttechnologyiselectrochemical:primarilylithiumionbatteries.Thepowerexpectedisshownin
Figure10.
15
Figure10.Distributionofexpectedpower,bystoragetechnology
Source:Europeanenergystorageinventory[1].
2.3.2.Mechanical
Weanalysetwotypesofmechanicalstoragethatarematureandoperational:
—pumped-storagehydropower
—compressed-airenergystorage(CAES).
.Pumped-storagehydropower
Keyaspectsandprinciples
Theprincipleofpumped-storagehydropower(PSH)isarenewableenergysourcethatconvertsthehydraulic(water)power(potentialandkineticpower)intomechanicalpowerbymeansofarotatingturbine,andintoelectricitythroughtheconnectiontoanelectricgenerator[10].
Figure11.ChargingprincipleofPSH
Source:EuropeanAssociationforStorageofEnergy(EASE).
Themaincomponentsarethefollowing:
16
—twowaterreservoirs/ponds(upperandlower),
—powerwaterwaytoconnectthereservoirs/ponds,
—hydropowerstationequippedwithternarymachinesetsorpump-turbines.DeploymentinEurope
PSHisthemostmaturestorageconceptinrespectofinstalledcapacity,andaquarteroftheglobalinstalledcapacityisintheEU[10].
Theassessmentismadeintermsofpower(GW)becausethereliabilityofthedataishigher.In
Figure12
thePSHpowerispresentedbystatus.
Figure12.PowerinPSHtechnology,bystatus
Source:Europeanenergystorageinventory[1].
Periodofcommissioning
Sincethistechnologyisalreadymatureandhasbeendeployedsincethebeginningofthe20thcentury,
Figure13
showsthedecadesinwhichprojectsusingthistechnologywereinstalled,consideringonlytheprojectsstilloperational.ThedecadeinwhichthelargestnumberofPSHprojectswerecommissionedwasthe1980s.
17
Figure13.NumberofnewPSHprojectsinstalledinEurope,bydecade
140
Numberofprojects
120
100
80
60
40
20
0
1950s1960s1970s1980s1990s2000s2010s2020s
Before50s
Source:Europeanenergystorageinventory[1].
Installationsbycountry
Thenumberofprojectsconcerningthistechnologydependsonthenaturalresourcesavailableandthegeographyofthecountry.In
Figure14,
weshowthe15countrieswiththemostoperationalpower,inorder.
18
Figure14.The15countrieswiththegreatestamountsofPSHoperationalpower
Source.Europeanenergystorageinventory[1].
Withthecommontargetof20%renewableenergyuseby2020and42.5%by2030,many
MemberStateshaveintroducedeconomicsupportprogrammesforrenewablegeneration.Inthis
context,PSHsystemscouldfacilitatetheirexpansion.Thenewprojectsexpectedarelocatedinninecountries,whichareshownin
Figure15.
19
Figure15.The9countrieswithexpectedPSHpower,bystatus
Source.Europeanenergystorageinventory[1].
.Compressed-airenergystorage
Keyaspectsandprinciples
CAESencompassestwoprimarysubtechnologies:
—diabaticcompressed-airenergystorage(D-CAES)
—adiabaticcompressed-airenergystorage(A-CAES).
D-CAESinvolvescompressingairintoundergroundgeologicalformations,suchassaltcaverns,
usingexcesselectricity,andthenheatingthereleasedairwithnaturalgasorfueltodriveagas
turbineandgenerateelectricitywhenneeded.Incontrast,A-CAESstorestheheatgeneratedduringthecompressioncycleusingthermalenergystorage(TES),allowingforamoreefficientandcleanerprocess,asthecompressedairisexpandedinaturbinetoproduceelectricitywhilerecoveringthe
storedheat,thuseliminatingtheneedforadditionalfuelcombustion.
20
Figure16.ChargingprinciplesofCAESsystems‘D-CAES’(left)and‘A-CAES’(right).
Source:EASE.
Themaincomponentsarethefollowing:
—compressordrivenbyanelectricmotor,
—airstorage-saltcavern,hardrockcavern,depletedgasfieldoraquifer,
—turbine,
—generator,
—fuel/gascombustionsystemtopreheatthereleasedairforD-CAES,orTESsystemforA-CAES.
DeploymentinEurope
TherearethreeoperationalprojectsinEuropeusingtheD-CAESsubtechnology.Theoldest,andtheonewiththehighestcapacity,istheHuntorfplantinGermany,commissionedin1978.Ituses
naturalgasasaheatsourceforthedischargingprocess.A-CAESsystemsareintheprocessofdemonstrationandarenotyetcommerciallyavailable.
2.3.3.Electrochemical
Keyaspectsandprinciples
Electrochemicalisthetechnologythathasbeendeployedmostinrecentyears,andseveralbatterytechnologiesmaybeincludedinthiscategory.
Thedominatingbatterytechnologyislithiumion(lithiumironphosphate(LFP),nickelmanganesecobaltoxide(NMC)andnickelcobaltaluminiumoxide).Inthefuture,lithiumionwillstill
predominate,buttherewillbeashifttolow-orzero-cobaltchemistries(LFP,lithiummanganeseironphosphate,amongothers).Theroleofsodiumionbatteriesandotheradvancedtechnologieswillincreasesignificantly[12].
Alithiumionbatterysystemisanenergystoragesystembasedonelectrochemical
charge/dischargereactionsthatoccurbetweenapositiveelectrode(cathode)thatcontainssomelithiatedmetaloxideandanegativeelectrode(anode)thatismadeofcarbonmaterialor
intercalationcompounds,amongotheroptions.Theelectrodesareseparatedbyporouspolymericmaterialsthatallowforelectronandionicflowbetweenthem,andareimmersedinanelectrolytethatismadeupoflithiumsaltsdissolvedinorganicliquids.
21
Whenthebatteryisbeingcharged,thelithiumatomsinthecathodebecomeionsandmigrate
throughtheelectrolytetowardsthecarbonanode,wheretheycombinewithexternalelectronsandaredepositedbetweencarbonlayersaslithiumatoms(Figure17).Thisprocessisreversedduringdischarge.
Themaincomponentsarethefollowing:
—elementarycellcomposedofanassemblyofelectrodes,electrolyteandseparators,
—modulescomposedofserialorparallelassemblingofcells,
—batterysystemscomposedofalargeassemblyofmodules,abatterymanagementsystemandathermalmanagementsystem,
—powerconversionsystem.
Figure18.Chargingprinciplesoflithiumionbatteries
NB:SEI:solidelectrolyteinterphase
Source:EASE.
DeploymentinEurope
AsshowninFigure19,theelectrochemicalprojectsexpectedrepresent84.72GWofpower,showingthatinstallationsofnewprojectswillcontinue.
22
Figure19.Powerinelectrochemicaltechnology,bystatus
Source:Europeanenergystorage
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025-2026年高二生物(综合检测)上学期期末检测卷
- 2025年大学市场营销(服务营销实务)试题及答案
- 2026年企业文化教育(企业文化)考题及答案
- 仪表岗位题库(300题)
- 2025年度教师思想工作总结报告
- 深度解析(2026)《GBT 18310.42-2003纤维光学互连器件和无源器件 基本试验和测量程序 第2-42部分试验 连接器的静态端部负荷》
- 深度解析(2026)《GBT 18115.15-2010稀土金属及其氧化物中稀土杂质化学分析方法 第15部分:镥中镧、铈、镨、钕、钐、铕、钆、铽、镝、钬、铒、铥、镱和钇量的测定》
- 深度解析(2026)《GBT 17739.3-2004技术图样与技术文件的缩微摄影 第3部分35 mm缩微胶片开窗卡》
- 深度解析(2026)《GBT 17587.2-1998滚珠丝杠副 第2部分公称直径和公称导程 公制系列》(2026年)深度解析
- 工艺精度改进提升方案
- 工程班组施工协议范本
- 全科主治医师考试真题及答案解析-《相关专业知识》
- 煤矿采掘技术
- 游艇俱乐部圈层策划方案
- 2023年南通启东市邮政局招考笔试参考题库(共500题)答案详解版
- 多媒体系统维保服务投标方案
- JCT890-2017 蒸压加气混凝土墙体专用砂浆
- 康复治疗学Bobath技术
- 上海市九年义务教育阶段写字等级考试(一级)硬笔方格收写纸
- 南部三期污水处理厂扩建工程项目环评报告
- 强磁场对透辉石光催化性能影响的实验毕业论文
评论
0/150
提交评论