数学苏教版七年级下册期末重点初中题目答案_第1页
数学苏教版七年级下册期末重点初中题目答案_第2页
数学苏教版七年级下册期末重点初中题目答案_第3页
数学苏教版七年级下册期末重点初中题目答案_第4页
数学苏教版七年级下册期末重点初中题目答案_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

数学苏教版七年级下册期末重点初中题目答案一、选择题1.下列各式中,计算结果为a6的是()A.a2•a3 B.a3+a3 C.a12÷a2 D.(a2)3答案:D解析:D【分析】分别根据同底数幂的乘法法则,合并同类项法则,同底数幂的除法法则以及幂的乘方运算法则逐一判断即可.【详解】解:A、a2•a3=a5,故本选项不合题意;B、a3+a3=2a3,故本选项不合题意;C、a12÷a2=a10,故本选项不合题意;D、(a2)3=a6,故本选项符合题意;故选:D.【点睛】本题考查了合并同类项,同底数幂的乘除法以及幂的乘方,熟记相关运算法则是解答本题的关键.2.如图,已知直线a,b被直线c所截,下列有关与说法正确的是()A.与是同位角 B.与是内错角C.与是同旁内角 D.与是对顶角答案:A解析:A【分析】根据同位角的定义判断即可.【详解】解:∠1和∠2是同位角,故选:A.【点睛】本题考查了同位角、内错角、同旁内角及对顶角的定义,能熟记同位角、内错角、同旁内角及对顶角的定义的内容是解此题的关键,注意数形结合.3.已知关于x、y的二元一次方程ax+b=y,下表列出了当x分别取值时对应的y值.则关于x的不等式ax+b<0的解集为()x…﹣2﹣10123…y…3210﹣1﹣2…A.x<1 B.x>1 C.x<0 D.x>0答案:B解析:B【分析】根据表格选取两对值代入二元一次方程组成方程组,解方程组得不等式,解不等式即可.【详解】解:由题意得出,解得,则不等式为﹣x+1<0,解得x>1,故选:B.【点睛】本题考查表格信息,会利用表格信息确定方程组,会解方程组,会解一元一次不等式是解题关键.4.若,则下列式子中一定成立的是()A. B. C. D.答案:B解析:B【分析】不等式左右两边同乘以一个负数,不等式符号要变号;不等式左右两边同时加上或减去一个数,不等式符号不变号,根据以上两个定理,可以将A、B选项的正误进行判断,同时再通过举反例的方法,也可判断C、D选项的正误.【详解】解:A选项:不等式两边同时乘以负数,不等式符号要变号,故-3a<-3b,故该选项错误;B选项:先将原式左右两边同乘以-1,不等式变号,得:-a<-b,在上式中,左右两边同时加上1,不等式不变号,得:1-a<1-b,故该选项正确;C选项:举反例:若a=1,b=-3,满足a>b,但是,故该选项错误;D选项:举反例:若a=1,,满足a>b,但是,故该选项错误,故选:B.【点睛】本题主要考察了不等式的性质,不等式左右两边同乘以一个负数,不等式符号要变号;不等式左右两边同乘以一个正数,不等式符号不变号;不等式左右两边同时加上或减去一个数,不等式符号不变号,掌握以上性质,就能较快作出判断.5.关于的不等式组有解,那么的取值范围是()A. B. C. D.答案:A解析:A【详解】【考点】一元一次不等式组有解的问题.【分析】分别解出两个不等式,有解就可以把两个解集写在一起,再观察右边的数比左边的数大,即可求出的范围.【解答】解:由①得,由②得,有解故选A.6.下列命题:(1)如果,,那么;(2)两直线平行,同旁内角相等;(3)对顶角相等;(4)等角的余角相等.其中,真命题的个数是()A.1 B.2 C.3 D.4答案:C解析:C【分析】利用不等式的性质、平行线的性质、对顶角的性质及余角的定义分别判断后即可确定正确的选项.【详解】解:(1)如果a<0,b<0,那么a+b<0,正确,是真命题;(2)两直线平行,同旁内角互补,故错误,是假命题;(3)对顶角相等,正确,是真命题;(4)等角的余角相等,正确,是真命题,真命题有3个.故选:C.【点睛】本题考查命题与定理的知识,解题的关键是了解不等式的性质、平行线的性质、对顶角的性质及余角的定义等知识.7.按如图所示的程序计算,若开始输入的的值为12,我们发现第一次得到的结果为6,第2次得到的结果为3,…,请你探索第2021次得到的结果为()A.6 B.3 C.2 D.1答案:C解析:C【分析】根据程序,分别计算前几次输出的结果,找到规律,再计算第2021次的结果即可.【详解】解:第一次输入12,的值为偶数,计算,第二次输入6,的值为偶数,计算,第三次输入3,的值为奇数,计算,第四次输入8,的值为偶数,计算,第五次输入4,的值为偶数,计算,第六次输入2,的值为偶数,计算,第七次输入1,的值为奇数,计算,第八次输入6,的值为偶数,计算,第九次输入3,的值为奇数,计算,第十次输入8,的值为偶数,计算,第十一次输入4,的值为偶数,计算,第十二次输入2,的值为偶数,计算,如此每6次一个循环,故第2021次得到的结果为:2,故选:C.【点睛】本题考查代数式求值、规律型:数字的变化等知识,是重要考点,难度较易,掌握相关知识是解题关键.8.如图,△OAB为等腰直角三角形(∠A=∠B=45°,∠AOB=90°),△OCD为等边三角形(∠C=∠D=∠COD=60°),满足OC>OA,△OCD绕点O从射线OC与射线OA重合的位置开始,逆时针旋转,旋转的角度为α(0°<α<360°),下列说法正确的是()A.当α=15°时,DC∥ABB.当OC⊥AB时,α=45°C.当边OB与边OD在同一直线上时,直线DC与直线AB相交形成的锐角为15°D.整个旋转过程,共有10个位置使得△OAB与△OCD有一条边平行答案:A解析:A【分析】设OC与AB交点为M,OD与AB交点为N,当α=15°时,可得∠OMN=α+∠A=60°,可证DC∥AB;当OC⊥AB时,α+∠A=90°,可得α=30°;当边OB与边OD在同一直线上时,应分两种情况,则直线DC与直线AB相交形成的锐角也有两种情况;整个旋转过程,因OC、OB、OD、OA都有交点,只有AB和CD存在平行,根据图形的对称性可判断有两个位置使得△OAB与△OCD有一条边平行.【详解】解:设OC与AB交点为M,OD与AB交点为N,当α=15°时,∠OMN=α+∠A=60°,∴∠OMN=∠C,∴DC∥AB,故A正确;当OC⊥AB时,α+∠A=90°或α﹣180°=90°﹣∠A,∴α=45°或225°,故B错误;当边OB与边OD在同一直线上时,应分两种情况,则直线DC与直线AB相交形成的锐角也有两种情况,故C错误;整个旋转过程,因OC、OB、OD、OA都有交点,只有AB和CD存在平行,根据图形的对称性可判断有两个位置使得△OAB与△OCD有一条边平行,故D错误;故选A.【点睛】本题主要考查了平行线的性质与判定,垂直的定义,解题的关键在于能够熟练掌握相关知识进行求解.二、填空题9.计算:____________.解析:【分析】根据单项式乘以单项式的乘法法则计算即可.【详解】;故答案为.【点睛】本题考查了整式的乘法公式,解题的关键熟练掌握单项式乘以单项式的乘法法则.10.命题“对顶角相等”的逆命题是一个__________命题(填“真”或“假”).解析:假【分析】先交换原命题的题设与结论得到逆命题,然后根据对顶角的定义进行判断.【详解】解:命题“对顶角相等”的逆命题是相等的角为对顶角,此逆命题为假命题.故答案为:假.【点睛】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.11.如图,五边形ABCD中,∠1、∠2、∠3是它的三个外角,已知∠C=120°,∠E=90°,那么∠1+∠2+∠3=___.答案:B解析:【分析】根据多边形的外角和为360°得到∠1+∠2+∠3+∠4+∠5=360°,从而得到∠1+∠2+∠3=210°.【详解】解:如图,∵∠BCD=120°,∠AED=90°,∴∠4=60°,∠5=90°,∵∠1+∠2+∠3+∠4+∠5=360°,∴∠1+∠2+∠3=360°-60°-90°=210°.故答案为:210°.【点睛】本题考查了多边形内角与外角.解题的关键掌熟练握多边形内角和与外角和:多边形内角和为(n-2)•180(n≥3)且n为整数),外角和永远为360°.12.已知a,b,c是△ABC的三条边的长度,且满足a2﹣b2=c(a﹣b),则△ABC一定是_____三角形.答案:A解析:等腰【分析】先把等式左边进行因式分解可化为(a+b)(a﹣b)=c(a﹣b),移项提取公因式可得(a﹣b)(a+b﹣c)=0,根据三角形三边之间的关系两边之和大于第三边,可得a﹣b=0,即可得出答案.【详解】解:由a2﹣b2=c(a﹣b),(a+b)(a﹣b)=c(a﹣b),(a+b)(a﹣b)﹣c(a﹣b)=0,(a﹣b)(a+b﹣c)=0,∵三角形两边之和大于第三边,即a+b>c,∴a+b﹣c≠0,∴a﹣b=0,即a=b,即△ABC一定是等腰三角形.故答案为:等腰.【点睛】本题主要考查了三角形三边之间的关系及因式分解,合理利用因式分解进行计算是解决本题的关键.13.已知关于x,y的二元一次方程组满足,则a的取值范围是____.解析:.【分析】根据题目中方程组的的特点,将两个方程作差,即可用含a的代数式表示出,再根据,即可求得的取值范围,本题得以解决.【详解】解:①-②,得∵∴,解得,故答案为:.【点睛】本题考查解一元一次不等式,二元一次方程组的解,熟悉相关性质是解答本题的关键.14.如图,点A到直线BC的距离是线段_____的长度.答案:A解析:AE【分析】根据点到直线的距离—点到直线的距离,垂线段最短,可求出答案.【详解】解:∵AE⊥BC,垂足为E,∴点A到直线BC的距离是线段AE的长度.故答案为:AE.【点睛】本题主要考查了点到直线的距离的意义,解题的关键是熟练掌握点到直线的距离的意义.15.把边长相等的正五边形ABCDE和正方形ABFG,按照如图所示的方式叠合在一起,连结AD,则∠DAG=_____.答案:18°【分析】连接BD.根据正五边形,正方形的性质求出∠DAB,∠GAB,由∠GAD=∠GAB﹣∠DAB计算即可.【详解】解:如图连接BD.∵ABCDE是正五边形,∵∠E=∠EAB=1解析:18°【分析】连接BD.根据正五边形,正方形的性质求出∠DAB,∠GAB,由∠GAD=∠GAB﹣∠DAB计算即可.【详解】解:如图连接BD.∵ABCDE是正五边形,∵∠E=∠EAB=108°,ED=EA,∴∠EAD=∠EDA=36°,∴∠DAB=108°﹣36°=72°,∵四边形ABFG是正方形,∴∠GAB=90°,∴∠GAD=∠GAB﹣∠DAB=90°﹣72°=18°.故答案为18°.【点睛】本题主要考查了正多边形的内角,掌握多边形内角和与每个内角之间的关系是解题的关键.16.已知:如图,AE是△ABC的角平分线,AD⊥BC于点D,若∠BAC=76°,∠C=64°,则∠DAE的度数是__________.答案:12°【分析】根据∠DAE=∠EAC-∠CAD,求出∠EAC,∠CAD即可.【详解】解:∵AE平分∠BAC,∴∠CAE=∠CAB=×76°=38°,∵AD⊥BC,∴∠ADC=90°,解析:12°【分析】根据∠DAE=∠EAC-∠CAD,求出∠EAC,∠CAD即可.【详解】解:∵AE平分∠BAC,∴∠CAE=∠CAB=×76°=38°,∵AD⊥BC,∴∠ADC=90°,∴∠CAD=90°-∠C=90°-64°=26°,∴∠DAE=∠EAC-∠CAD=38°-26°=12°,故答案为:12°.【点睛】本题考查了三角形内角和定理,角平分线的定义,三角形的高等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.17.计算:(1)(2)答案:(1);(2)12【分析】(1)根据积的乘方、幂的乘方法则计算,再合并同类项;(2)先算乘方,再算乘法,最后算加减.【详解】解:(1)==;(2)===12【点睛】本题考查解析:(1);(2)12【分析】(1)根据积的乘方、幂的乘方法则计算,再合并同类项;(2)先算乘方,再算乘法,最后算加减.【详解】解:(1)==;(2)===12【点睛】本题考查整式的混合运算、实数的混合运算,解答本题的关键是明确它们各自的计算方法.18.因式分解:(1)x3﹣16x;(2)﹣2x3y+4x2y2﹣2xy3.答案:(1)x(x+4)(x﹣4);(2)﹣2xy(x﹣y)2.【分析】(1)先提公因式,再利用平方差公式;(2)先提公因式,再利用完全平方公式.【详解】解:(1)原式=x(x2﹣16)=x(解析:(1)x(x+4)(x﹣4);(2)﹣2xy(x﹣y)2.【分析】(1)先提公因式,再利用平方差公式;(2)先提公因式,再利用完全平方公式.【详解】解:(1)原式=x(x2﹣16)=x(x+4)(x﹣4);(2)原式=﹣2xy(x2﹣2xy+y2)=﹣2xy(x﹣y)2.【点睛】本题主要考查了因式分解,解题的关键在于能够熟练掌握因式分解的方法.19.解方程组(2)(2)答案:(1);(2)【分析】(1)根据代入消元法求解二元一次方程组,即可得到答案;(2)根据加减消元法求解二元一次方程组,即可得到答案.【详解】(1),将①代入②,得:,解得:,将代入①,得解析:(1);(2)【分析】(1)根据代入消元法求解二元一次方程组,即可得到答案;(2)根据加减消元法求解二元一次方程组,即可得到答案.【详解】(1),将①代入②,得:,解得:,将代入①,得:,∴方程组的解为;(2),①×5,得:③,②+③,得:,解得:,将代入①,得:,解得:,∴方程组的解为.【点睛】本题考查了二元一次方程组的知识;解题的关键是熟练掌握二元一次方程组的解法,从而完成求解.20.解不等式组,并把解集在数轴上表示出来.答案:-2<x≤3,数轴见解析【分析】先求出两个不等式的解集,再求其公共解.【详解】解:,解不等式①得,x>-2,解不等式②,5(x-1)≤2(2x-1),即5x-5≤4x-2,解得x≤3解析:-2<x≤3,数轴见解析【分析】先求出两个不等式的解集,再求其公共解.【详解】解:,解不等式①得,x>-2,解不等式②,5(x-1)≤2(2x-1),即5x-5≤4x-2,解得x≤3,在数轴上表示如下:所以,不等式组的解集为:-2<x≤3.【点睛】本题考查了一元一次不等式组的解法,在数轴上表示不等式组的解集,需要把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.三、解答题21.已知:如图,AE平分∠BAD,ABCD,CD与AE相交于点F,∠CFE=∠E,求证:ADBC.证明:∵ABCD(已知),∴∠1=∠(两直线平行,同位角相等).∵AE平分∠BAD(已知),∴∠1=∠2().∴∠2=∠CFE(等量代换).又∵∠CFE=∠E(已知),∴∠=∠E(等量代换).∴ADBC().答案:CFE;角平分线的定义;2;内错角相等,两直线平行;【分析】第一空,由平行线的性质:两直线平行,同位角相等可得∠1=∠CFE;第二空,根据角平分线的定义即可得出答案;第三空,由已知条件∠CFE=解析:CFE;角平分线的定义;2;内错角相等,两直线平行;【分析】第一空,由平行线的性质:两直线平行,同位角相等可得∠1=∠CFE;第二空,根据角平分线的定义即可得出答案;第三空,由已知条件∠CFE=∠E,等量代换即可得出答案;第四空,由平行线的判定即可得出答案.【详解】证明:∵AB∥CD(已知),∴∠1=∠CFE(两直线平行,同位角相等).∵AE平分∠BAD(已知),∴∠1=∠2(角平分线的定义).∴∠2=∠CFE(等量代换).又∵∠CFE=∠E(已知),∴∠2=∠E(等量代换).∴AD∥BC(内错角相等,两直线平行).故答案为:CFE;角平分线的定义;2;内错角相等,两直线平行.【点睛】本题主要考查了平行线的性质与判定,角平分线的定义,解题的关键在于能够熟知相关知识点进行证明求解.22.某加工厂用52500元购进A、B两种原料共40吨,其中原料A每吨1500元,原料B每吨1000元.由于原料容易变质,该加工厂需尽快将这批原料运往有保质条件的仓库储存.经市场调查获得以下信息:①将原料运往仓库有公路运输与铁路运输两种方式可供选择,其中公路全程120千米,铁路全程150千米;②两种运输方式的运输单价不同(单价:每吨每千米所收的运输费);③公路运输时,每吨每千米还需加收1元的燃油附加费;④运输还需支付原料装卸费:公路运输时,每吨装卸费100元;铁路运输时,每吨装卸费220元.(1)加工厂购进A、B两种原料各多少吨?(2)由于每种运输方式的运输能力有限,都无法单独承担这批原料的运输任务.加工厂为了尽快将这批原料运往仓库,决定将A原料选一种方式运输,B原料用另一种方式运输,哪种方案运输总花费较少?请说明理由.答案:(1)加工厂购进A种原料25吨,B种原料15吨;(2)当m﹣n<0,即a<b时,方案一运输总花费少,当m﹣n=0,即a=b时,两种运输总花费相等,当m﹣n>0,即a>b时,方案二运输总花费少,见解析解析:(1)加工厂购进A种原料25吨,B种原料15吨;(2)当m﹣n<0,即a<b时,方案一运输总花费少,当m﹣n=0,即a=b时,两种运输总花费相等,当m﹣n>0,即a>b时,方案二运输总花费少,见解析【分析】(1)设加工厂购进种原料吨,种原料吨,由题意:某加工厂用52500元购进、两种原料共40吨,其中原料每吨1500元,原料每吨1000元.列方程组,解方程组即可;(2)设公路运输的单价为元,铁路运输的单价为元,有两种方案,方案一:原料公路运输,原料铁路运输;方案二:原料铁路运输,原料公路运输;设方案一的运输总花费为元,方案二的运输总花费为元,分别求出、,再分情况讨论即可.【详解】解:(1)设加工厂购进种原料吨,种原料吨,由题意得:,解得:,答:加工厂购进种原料25吨,种原料15吨;(2)设公路运输的单价为元,铁路运输的单价为元,根据题意,有两种方案,方案一:原料公路运输,原料铁路运输;方案二:原料铁路运输,原料公路运输;设方案一的运输总花费为元,方案二的运输总花费为元,则,,,当,即时,方案一运输总花费少,即原料公路运输,原料铁路运输,总花费少;当,即时,两种运输总花费相等;当,即时,方案二运输总花费少,即原料铁路运输,原料公路运输,总花费少.【点睛】本题考查了一元一次不等式的应用、二元一次方程组的应用等知识;解题的关键是:(1)找准等量关系,列出二元一次方程组;(2)找出数量关系,列出一元一次不等式或一元一次方程.23.对于不为0的一位数和一个两位数,将数放置于两位数之前,或者将数放置于两位数的十位数字与个位数字之间就可以得到两个新的三位数,将较大三位数减去较小三位数的差与15的商记为.例如:当,时,可以得到168,618.较大三位数减去较小三位数的差为,而,所以.(1)计算:.(2)若是一位数,是两位数,的十位数字为(,为自然数),个位数字为8,当时,求出所有可能的,的值.答案:(1)=6;(2)a=3,b=78或a=7,b=78.【分析】(1)=(217-127)÷15=6;(2)分1≤a<5,a=5,5<a≤9三种情形讨论计算.【详解】(1)当,时,解析:(1)=6;(2)a=3,b=78或a=7,b=78.【分析】(1)=(217-127)÷15=6;(2)分1≤a<5,a=5,5<a≤9三种情形讨论计算.【详解】(1)当,时,可以得到217,127.较大三位数减去较小三位数的差为,而,∴.(2)当,时,可以得a50,5a0.三位数分别为100a+50,500+10a,当1≤a<5时,(500+10a)-(100a+50)=450-90a,而,∴=,∴=;当a=5时,(500+10a)-(100a+50)=0,而,∴=0,∴=0;当5<a≤9时,(100a+50)-(500+10a)=90a-450,而,∴=,∴=a-5;当,时,可以得900+10x+8,100x+98.∵,∴(900+10x+8)-(100x+98)=810-90x,而,∴=,,∴=;当1≤a<5时,5-a+27-3x=8,∴a+3x=24,∴当a=1时,x=(舍去),当a=2时,x=(舍去),当a=3时,x=7,当a=4时,x=(舍去),∴a=3,b=78;当a=5时,则27-3x=8,∴x=(舍去),当5<a≤9时,则a-5+27-3x=8,∴3x-a=14,∴当a=6时,x=(舍去),当a=7时,x=7,当a=8时,x=(舍去),当a=9时,x=(舍去),∴a=7,b=78;综上所述,a=3,b=78或a=7,b=78.【点睛】本题考查了新定义问题和二元一次方程的整数解,准确理解新定义的意义,灵活运用分类思想和枚举法是解题的关键.24.【问题探究】如图1,DF∥CE,∠PCE=∠α,∠PDF=∠β,猜想∠DPC与α、β之间有何数量关系?并说明理由;【问题迁移】如图2,DF∥CE,点P在三角板AB边上滑动,∠PCE=∠α,∠PDF=∠β.(1)当点P在E、F两点之间运动时,如果α=30°,β=40°,则∠DPC=°.(2)如果点P在E、F两点外侧运动时(点P与点A、B、E、F四点不重合),写出∠DPC与α、β之间的数量关系,并说明理由.(图1)(图2)答案:∠DPC=α+β,理由见解析;(1)70;(2)∠DPC=α–β,理由见解析.【解析】(1)过P作PE∥AD交CD于E,推出AD∥PE∥BC,根据平行线的性质得出∠α=∠DPE,∠β=∠C解析:∠DPC=α+β,理由见解析;(1)70;(2)∠DPC=α–β,理由见解析.【解析】(1)过P作PE∥AD交CD于E,推出AD∥PE∥BC,根据平行线的性质得出∠α=∠DPE,∠β=∠CPE,即可得出答案;(2)化成图形,根据平行线的性质得出∠α=∠DPE,∠β=∠CPE,即可得出答案.【问题探究】解:∠DPC=α+β如图,过P作PH∥DF∵DF∥CE,∴∠PCE=∠1=α,∠PDF=∠2∵∠DPC=∠2+∠1=α+β【问题迁移】(1)70(图1)(图2)(2)如图1,∠DPC=β-α∵DF∥CE,∴∠PCE=∠1=β,∵∠DPC=∠1-∠FDP=∠1-α.∴∠DPC=β-α如图2,∠DPC=α-β∵DF∥CE,∴∠PDF=∠1=α∵∠DPC=∠1-∠ACE=∠1-β.∴∠DPC=α-β25.认真阅读下面关于三角形内外角平分线所夹角的探究片段,完成所提出的问题.(探究1):如图1,在ΔABC中,O是∠ABC与∠ACB的平分线BO和CO的交点,通过分析发现∠BOC=90º+∠A,(请补齐空白处)理由如下:∵BO和CO分别是∠ABC和∠ACB的角平分线,∴∠1=∠ABC,_________________,在ΔABC中,∠A+∠ABC+∠ACB=180º.∴∠1+∠2=(∠ABC+∠ACB)=(180º-∠A)=90º-∠A,∴∠BOC=180º-(∠1+∠2)=180º-(________)=90º+∠A.(探究2):如图2,已知O是外角∠DBC与外角∠ECB的平分线BO和CO的交点,则∠BOC与∠A有怎样的关系?请说明理由.(应用):如图3,在RtΔAOB中,∠AOB=90º,已知AB不平行与CD,AC、BD分别是∠BAO和∠ABO的角平分线,又CE、DE分别是∠ACD和∠BDC的角平分线,则∠E=_______;(拓展):如图4,直线MN与直线PQ相交于O,∠MOQ=60º,点A在射线OP上运动,点B在射线OM上运动,延长BA至G,已知∠BAO、∠OAG的角平分线与∠BOQ的角平分线及其延长线交于E、F,在ΔAEF中,如果有一个角是另一个角的4倍,则∠ABO=______.答案:【探究1】∠2=∠ACB,90º-∠A;【探究2】∠BOC=90°﹣∠A,理由见解析;【应用】22.5°;【拓展】45°或36°.【分析】【探究1】根据角平分线的定义可得∠1=∠ABC,∠2=∠解析:【探究1】∠2=∠ACB,90º-∠A;【探究2】∠BOC=90°﹣∠A,理由见解析;【应用】22.5°;【拓展】45°或36°.【分析】【探究1】根据角平分线的定义可得∠1=∠ABC,∠2=∠ACB,根据三角形的内角和定理可得∠1+∠2=90º-∠A,再根据三角形的内角和定理即可得出结论;【探究2】如图2,由三角形的外角性质和角平分线的定义可得∠OBC=(∠A+∠ACB),∠OCB=(∠A+∠ABC),然后再根据三角形的内角和定理即可得出结论;【应用】延长AC与

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论