版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
(2026年新教材)人教版初中数学八年级下册教学课件2026年新版八年级下册数学(人教版)教材变化一、核心结构与章节调整内容重组:二次根式由九上移至八下;一次函数由八上移至八下;反比例函数移至九下;分式调整至八上。章题优化:“四边形”改为平行四边形,删去梯形内容,聚焦核心图形。栏目升级:每节新增引言;章引言与小结优化;新增溯源、图说数学史栏目,强化问题驱动与文化渗透。二、内容与表述优化二次根式:根号下含字母的化简与运算标注为选学;只要求理解加减乘除法则,会进行简单四则运算(根号下仅限数)。勾股定理:突出面积法证明;新增数学活动,用勾股定理证明“HL”判定;加强知识总结与实践应用。平行四边形:突出逻辑推理,部分结论从逆命题角度推导,减少实验操作;强化定义—性质—判定的研究路径。一次函数:强化“变化与对应”思想;情境贴近生活,新增多选题与探究题,分层更清晰。数据的分析:新增趋势分析,完善统计知识体系,例习题更新超60%,情境更真实。三、综合实践与活动升级新增2个综合与实践:《基于一次函数的最优化问题》《利用平行四边形性质设计图案》,强调建模与跨学科应用。数学活动更新:每章2个共10个,6个换新,突出探究与动手操作,如勾股定理的拓展证明。21.1四边形及多边形第二十一章四边形逐点导讲练课堂小结作业提升课时讲解1课时流程2四边形及其相关概念四边形的内角和、外角和四边形的不稳定性多边形及其相关概念多边形的内角和多边形的外角和知识点四边形及其相关概念知1-讲11.四边形的定义:如图21.1-1,在平面内,由不在同一直线上的四条线段首尾顺次相接组成的图形叫作四边形,组成四边形的各条线段叫作四边形的边,每相邻两条线段的公共端点叫作四边形的顶点.四边形用表示它的各个顶点的字母表示,例如:图21.1-1中的四边形,可以按照顶点的顺序,记作“四边形ABCD”.知1-讲2.四边形的相关概念(1)四边形的对角线:连接四边形不相邻的两个顶点的线段,叫作四边形的对角线.在图21.1-3中,AC,BD是四边形ABCD的两条对角线,它们分别将四边形ABCD分为两个三角形.知1-讲(2)四边形的内角和外角:四边形相邻两边组成的角叫作四边形的内角,简称四边形的角;四边形的角的一边与另一边的延长线组成的角叫作四边形的外角.如图21.1-4,∠DAB,∠ABC,∠BCD,∠CDA是四边形ABCD的内角,∠1,∠2,∠3,∠4是四边形ABCD的外角.知1-讲特别解读如图21.1-2①,画出四边形ABCD的任何一条边(例如CD)所在的直线,整个四边形都在这条直线的同一侧,这样的四边形叫作凸四边形.知1-讲而图21.1-2②中的四边形ABCD就不是凸四边形,因为画出边CD(或BC)所在的直线,整个四边形不都在这条直线的同一侧.今后,如无特殊说明,所讨论的四边形都是凸四边形.知1-练例1四边形ABCD中,AC,BD交于点O.猜想AC+BD与AB+CD的大小关系,并证明.解题秘方:结合题意画出图形,利用三角形的三边关系比较线段和的大小.知1-练解:AC+BD>AB+CD.证明如下:如图21.1-5所示,在△AOB中,OA+OB>AB,在△COD中,OC+OD>CD.所以OA+OB+OC+OD>AB+CD,即(OA+OC)+(OB+OD)>AB+CD,所以AC+BD>AB+CD.知1-练1-1.如图,在等腰梯形ABCD中,AD∥BC,AC,BD交于点O,全等三角形共有______对.3知2-讲知识点四边形的内角和、外角和21.四边形的内角和等于360°.推导过程如下:如图21.1-6,在四边形ABCD中,连接对角线AC,则四边形ABCD被分为△ABC和△ACD两个三角形.
在△ABC中,由三角形的内角和定理,得∠1+∠B+∠3=180°.知2-讲同理∠2+∠4+∠D=180°.由此可得∠DAB+∠B+∠BCD+∠D=∠1+∠2+∠B+∠3+∠4+∠D=(∠1+∠B+∠3)+(∠2+∠4+∠D)=180°+180°=360°,即四边形的内角和等于360°.知2-讲2.四边形的外角和等于360°.推导过程如下:因为四边形的每一个内角与和它相邻的外角是邻补角,所以四边形的外角和与内角和的总和为4×180°.因为四边形的内角和等于360°,所以四边形的外角和等于4×180°-360°=360°.知2-讲特别解读四边形内角和的推导利用了数学中的转化思想,即连接对角线将四边形转化成两个三角形,利用三角形的内角和求解.知2-练如图21.1-7,在四边形ABCD中,∠A=∠C=90°,∠D=75°,则∠B的度数为()A.90°B.95°C.105°D.115°例2知2-练解题秘方:紧扣“四边形的内角和等于360°”计算.解:∵∠A=∠C=90°,∠D=75°,且四边形ABCD的内角和为360°,∴∠B=360°-90°-90°-75°=105°.答案:C知2-练2-1.如图所示,x的值为__________.50知3-讲知识点四边形的不稳定性31.四边形的不稳定性:四边形的四条边确定后,四个角并不确定,这说明四边形不具有稳定性.连接一条对角线后,四边形变成两个三角形,这时四边形的形状不再发生变化.知3-讲2.四边形不稳定性的应用:在日常生活中,有时需要利用四边形的不稳定性,如图21.1-8中的活动挂架和伸缩门;有时又需要克服四边形的不稳定性,例如门框在未安装好之前,木工师傅会先沿着对角线钉一根木条,以防门框变形.知3-讲特别解读三角形具有稳定性,因为三角形的三条边确定后,三个角也就确定了,形状不会发生变化.知3-练如图21.1-9,具有稳定性的是()解题秘方:关键是看各图形能否完全“分解”成三角形.例3知3-练答案:C解:A选项可以看成是由两个四边形组成的,B选项可以看成是由两个长方形和一个三角形组成的,D选项可以看成是由一个三角形和一个四边形组成的,都含有四边形,因此不具有稳定性;C选项可以看成是由三个三角形组成的,因此具有稳定性.知3-练3-1.下图中,不具有稳定性的是(
)D知4-讲知识点多边形及其相关概念41.多边形的定义:在平面内,由不在同一直线上的若干条线段首尾顺次相接,组成的图形叫作多边形.多边形有几条边就叫作几边形.知4-讲2.多边形的相关概念概念定义图形边组成多边形的各条线段顶点每相邻两条线段的公共端点内角多边形相邻两边组成的角外角多边形的角的一边与另一边的延长线组成的角对角线连接多边形不相邻的两个顶点的线段知4-讲多边形用表示它的各个顶点的字母表示,例如上表中的五边形,记作“五边形ABCDE”.知4-讲3.正多边形:各个角都相等、各条边都相等的多边形叫作正多边形.例如正三角形、正方形等(如图21.1-10)知4-讲特别解读多边形的三个必要条件:1.线段在“同一平面内”;2.线段“不在同一直线上”且条数不少于3;3.首尾顺次相接.知4-讲特别提醒1.三角形是最简单的多边形.2.多边形用表示它的各个顶点的字母表示时,字母必须按顺时针或逆时针的方向排列.3.若一个多边形的各个角都相等或各条边都相等,则它不一定是正多边形.知4-练下列说法中,正确的有()①三角形是边数最少的多边形;②等边三角形和长方形都是正多边形;③n边形有n条边、n个顶点、n个内角和n个外角;④六边形从一个顶点出发可以画3条对角线,所有的对角线共有9条.A.1个 B.2个 C.3个 D.4个例4知4-练解题秘方:利用多边形的有关概念进行辨析.解:①三角形是边数最少的多边形,正确;②等边三角形是正多边形,但长方形不是正多边形,错误;③n边形有n
条边、n个顶点、n个内角和2n个外角,错误;④根据对角线的定义画出六边形的对角线可知,从一个顶点出发可以画3条对角线,所有的对角线共有9条,正确.答案:B知4-练
知4-练4-1.下列说法错误的是(
)A.五边形有5条边,5个内角,5个顶点B.四边形有2条对角线C.正多边形的每个外角都相等D.六边形的六个角都相等D知4-练4-2.从一个多边形的一个顶点可引2026条对角线,则这个多边形的边数是(
)A.2026 B.2027C.2028 D.2029D知5-讲知识点多边形的内角和51.多边形的内角和公式:n边形的内角和等于(n-2)×180°.知5-讲2.多边形内角和公式的证明方法证明方法图形证法1从n边形的一个顶点出发可以作(n-3)条对角线,将这个n边形分成(n-2)个三角形,这(n-2)个三角形的内角和恰好是这个n边形的内角和,为(n-2)×180°知5-讲续表证明方法图形证法2在n边形内任取一点,并把这点与n边形的各个顶点连接起来,共构成n个三角形,这n个三角形的内角和为n×180°,再减去一个周角,即可得到n边形的内角和为(n-2)×180°知5-讲续表证明方法图形证法3在n边形的一边上任取一点,并把这点与n边形的各个顶点连接起来,共构成(n-1)个三角形,这(n-1)个三角形的内角和为(n-1)×180°,再减去这点处的一个平角,即可得到n边形的内角和为(n-2)×180°知5-讲续表证明方法图形证法4在n边形外任取一点O,并把这点与n边形的各个顶点连接起来,得到以n边形的边为一边,顶点为O的三角形有n个,这n个三角形的内角和为n×180°,再减去两个三角形的内角和,即可得到n边形的内角和为(n-2)×180°知5-讲特别解读1.由n边形的内角和公式(n-2)×180°可知n边形的内角和一定是180°的整数倍.2.多边形的内角和随边数的变化而变化,边数每增加1,内角和就增加180°.3.多边形内角和问题常通过添加辅助线将其转化为三角形的内角和问题.知5-讲
知5-练如图21.1-11,正五边形ABCDE中,对角线AC与边DE平行,求∠BCA的度数.解题秘方:紧扣多边形的内角和公式及平行线的性质求出相关角的度数.例5知5-练
知5-练5-1.如图,已知六边形ABCDEF的每个内角都相等,连接AD.若∠1=48°,求∠2的度数.知5-练知5-练根据下列条件求多边形的边数:(1)多边形的内角和是1620°;(2)正多边形的每个内角均为135°.思路导引:例6知5-练解:设多边形的边数为n.(1)(n-2)×180°=1620°,解得n=11.因此多边形的边数为11.(2)(n-2)×180°=135°·n,解得n=8.因此正多边形的边数为8.知5-练6-1.已知两个多边形的内角总和为1080°,且边数之比为2∶3,求这两个多边形的边数.解:设这两个多边形的边数分别为2n,3n.根据多边形内角和公式,得(2n-2)×180°+(3n-2)×180°=1080°,解得n=2.所以2n=4,3n=6,即这两个多边形的边数分别是4,6.知6-讲知识点多边形的外角和61.多边形的外角和等于360°.推导过程如下:与四边形类似,多边形的每一个内角与和它相邻的外角是邻补角,因此n边形的内角和与外角和的总和等于n×180°,外角和等于n×180°-(n-2)×180°=360°.知6-讲
知6-讲特别解读1.多边形的外角和是指每个顶点处取一个外角的和.2.多边形的外角和恒等于360°,与边数无关.知6-练根据下列条件解决问题:(1)一个多边形的各内角都相等,已知其中一个外角为72°,求该多边形的边数;(2)已知一个正多边形的每一个外角都等于30°,求这个正多边形的边数.例7解题秘方:根据多边形的外角和等于360°计算.知6-练解:(1)设该多边形的边数为n.由题易知多边形的各外角都相等,根据多边形的外角和为360°,得n×72°=360°,解得n=5.因此该多边形的边数为5.(2)多边形的外角和为360°,则360°÷30°=12.因此这个正多边形的边数为12.知6-练7-1.如图是由射线AB,BC,CD,DE,EF,FA组成的平面图形,若∠1+∠3+∠5=150°,则∠2+∠4+∠6=_________.210°如果一个多边形的内角和是外角和的4倍,求这个多边形的边数.知6-练例8解题秘方:已知多边形的内角和与外角和的关系时,可以利用多边形内角和公式与多边形的外角和等于360°建立方程求解.知6-练解:设这个多边形的边数是n.根据题意,得(n-2)×180°=4×360°,解得n=10.因此这个多边形的边数是10.知6-练8-1.若一个多边形的内角和与外角和共1260°,则这个多边形的边数是________.7四边形及多边形多边形定义正多边形内角内角和对角线外角外角和一个多边形截去一个角后,形成的新多边形的内角和是2880°,则原多边形的边数是多少?题型求截角的多边形边数1例9思路导引:解:设原多边形的边数为n,将一个多边形截去一个角后图形有以下三种情况:①当边数增加1时,则有(n+1-2)×180°=2880°,解得n=17;②当边数不变时,则有(n-2)×180°=2880°,解得n=18;③当边数减小1时,则有(n-1-2)×180°=2880°,解得n=19.综上可知,原多边形的边数是17或18或19.特别提醒一个多边形(除三角形外)截去一个角后,按不同的截法可得到边数不同的三种多边形,即边数增加1,边数不变,边数减少1.以五边形为例,如图21.1-12所示.一个多边形除一个内角外其余内角的和为1510°,则这个多边形对角线的条数是()A.27 B.35 C.44 D.54题型求漏角的多边形边数2例10思路导引:答案:C
题型求不规则多边形的内角和3如图21.1-13,求∠1+∠2+∠3+∠4+∠5+∠6+∠7的度数.例11思路导引:解:如图21.1-13,连接CH,则易知∠6+∠7=∠8+∠9.故∠1+∠2+∠3+∠4+∠5+∠6+∠7=∠1+∠2+∠3+∠4+∠5+∠8+∠9=(5-2)×180°=540°.特别解读1.有关“折线图”中求多个角的和的问题,可运用数学中的转化思想,通过作适当的辅助线,将其转化到同一个多边形中,利用多边形的内角和解决.2.非凸多边形多角和问题的求解思路是通过添加辅助线把图形转化为凸多边形,然后运用多边形内角和公式求解.题型与多边形内角和有关的探究性问题4(1)如图21.1-14①②,试研究其中∠1,∠2与∠3,∠4之间的数量关系;例12解题秘方:利用四边形的内角和,结合邻补角的和等于180°进行等式变形可得到角之间的数量关系.解:∵∠3,∠4,∠5,∠6是四边形的四个内角,∴∠3+∠4+∠5+∠6=360°.∴∠3+∠4=360°-(∠5+∠6).∵∠1+∠5=180°,∠2+∠6=180°,∴∠1+∠2=360°-(∠5+∠6).∴∠1+∠2=∠3+∠4.(2)如果我们把∠1,∠2称为四边形的外角,那么请你用文字描述上述的关系式;解:四边形的任意两个外角的和等于与它们不相邻的两个内角的和.(3)用你发现的结论解决下列问题:如图21.1-14③,AE,DE分别是四边形ABCD的外角∠NAD,∠MDA的平分线,∠B+∠C=240°,求∠E
的度数.
特别提醒以∠5,∠6为桥梁,根据四边形内角和为360°以及邻补角的和等于180°,建立∠1,∠2与∠3,∠4的关系是解决(1)的关键.方法总结1.在解答本题(3)时,利用了(2)中的结论,为解题带来了方便,也是题目本身的要求.实际上在解决涉及多问的题目时,若后面的问题没有增加条件,可借用前面所得到的结论进行解答.
易错点多边形的“截角”问题漏解如图21.1-15,从一个五边形中切去一个三角形,得到一个三角形和一个新的多边形,那么这个新多边形的边数为多少?请画图说明.例13错解:分两种情况:(1)如图21.1-16①,新多边形为四边形;(2)如图21.1-16②,新多边形为五边形.综上所述,这个新多边形的边数为4或5.正解:分三种情况:(1)如图21.1-17①,新多边形为四边形;(2)如图21.1-17②,新多边形为五边形;(3)如图21.1-17③,新多边形为六边形.综上所述,这个新多边形的边数为4或5或6.诊误区:多边形中截去一个三角形,有三种情况:1.过不相邻的两顶点截;2.过一顶点和另一边上的一点(非顶点)截;3.过相邻两边上的两个非顶点截.注意不要漏解.[中考·江西]如图21.1-18,创意图案中间空白部分为正多边形,该正多边形的内角和为_______°.考法求多边形的内角和1例14720试题评析:本题考查多边形的内角和公式;根据n边形的内角和公式(n-2)×180°进行计算即可.解:根据图形知,空白部分为正六边形,六边形的内角和为(6-2)×180°=720°.[中考·遂宁]已知一个凸多边形的内角和是外角和的4倍,则该多边形的边数为()A.10 B.11 C.12 D.13考法利用多边形内角和与外角和的关系求边数2例15试题评析:本题考查多边形的内角和与外角和,根据多边形内角和与外角和的关系建立方程求解.答案:A解:设这个多边形的边数为n.根据题意,得(n-2)×180°=4×360°.解方程,得n=10.因此该多边形的边数为10.[中考·眉山]如图21.1-19,直线l与正五边形ABCDE的边AB,DE分别交于点M,N,则∠1+∠2的度数为()A.216° B.180°C.144° D.120°考法正多边形中的求角度和问题3例16试题评析:本题考查了多边形的内角和、对顶角相等,熟练掌握多边形的内角和公式是解题的关键.答案:C
1.生活中处处有教学,用数学的眼光观察世界,在生活实践中发现数学的奥秘.下列图形中,不是运用三角形的稳定性的是()C2.[中考·云南]一个六边形的内角和等于()A.360° B.540° C.720° D.900°3.若一个正n边形的每个内角为144°,则这个正n边形的所有对角线的条数是()A.7 B.10 C.35 D. 70CC4.[中考·自贡]如图,正六边形与正方形的两邻边相交,则α+β=()A.140°B.150°C.160°D.170°B5.如图,点A,B,C,D,E在同一平面内,连接AB,BC,CD,DE,EA,若∠BCD=100°,则∠A+∠B+∠D+∠E=()A.220°B.240°C.260°D.280°D
5118.一个机器人从O点出发,每前进1m,就向右转体α
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年江苏黄海金融控股集团有限公司招聘备考题库参考答案详解
- 山西省盐业集团有限责任公司2025年公开招聘工作人员备考题库及答案详解一套
- 咸宁市第一高级中学2026年专项校园公开招聘教师备考题库(华师专场)及参考答案详解一套
- 2025年许昌市戏曲艺术发展中心招聘劳务派遣人员13人工作备考题库及1套参考答案详解
- 2025年佛山市南海区桂城街道文翰第五幼儿园招聘储备教师岗位备考题库及一套完整答案详解
- 2025年湖南中南大学湘雅口腔医院护士招聘7人备考题库完整参考答案详解
- 2025年北京市延庆区教育委员会所属事业单位人才引进公开招聘6人备考题库及参考答案详解
- 2025年天津渤海集团财务有限责任公司校园招聘备考题库及参考答案详解1套
- 云南铝业股份有限公司2026年高校毕业生招聘73人备考题库及答案详解1套
- 2025年浙江工商职业技术学院公开招聘高层次、高技能人才(教师)35人备考题库有答案详解
- 2024年河北秦皇岛市公安医院招聘考试真题
- 西方哲学史考研重点资料
- 智慧树知道网课《大学英语(海南经贸职业技术学院)》课后章节测试答案
- 工程工程培训课件
- 2025年出租车隐患培训会议记录内容范文
- 医院肝病学科建设与诊疗进展汇报
- 2025年军队专业技能岗位文职人员招聘考试(电工)历年参考题库含答案详解(5卷)
- JJG 688-2025汽车排放气体测试仪检定规程
- 济南医院节能管理办法
- 2025至2030中国救生衣和救生衣行业发展趋势分析与未来投资战略咨询研究报告
- 绿化养护物资管理制度
评论
0/150
提交评论