丹巴县2024-2025学年高三二诊模拟考试数学试卷含解析_第1页
丹巴县2024-2025学年高三二诊模拟考试数学试卷含解析_第2页
丹巴县2024-2025学年高三二诊模拟考试数学试卷含解析_第3页
丹巴县2024-2025学年高三二诊模拟考试数学试卷含解析_第4页
丹巴县2024-2025学年高三二诊模拟考试数学试卷含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

丹巴县2024-2025学年高三二诊模拟考试数学试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.设函数,若在上有且仅有5个零点,则的取值范围为()A. B. C. D.2.已知某几何体的三视图如图所示,其中正视图与侧视图是全等的直角三角形,则该几何体的各个面中,最大面的面积为()A.2 B.5 C. D.3.“角谷猜想”的内容是:对于任意一个大于1的整数,如果为偶数就除以2,如果是奇数,就将其乘3再加1,执行如图所示的程序框图,若输入,则输出的()A.6 B.7 C.8 D.94.已知复数,则的虚部是()A. B. C. D.15.正项等差数列的前和为,已知,则=()A.35 B.36 C.45 D.546.某高中高三(1)班为了冲刺高考,营造良好的学习氛围,向班内同学征集书法作品贴在班内墙壁上,小王,小董,小李各写了一幅书法作品,分别是:“入班即静”,“天道酬勤”,“细节决定成败”,为了弄清“天道酬勤”这一作品是谁写的,班主任对三人进行了问话,得到回复如下:小王说:“入班即静”是我写的;小董说:“天道酬勤”不是小王写的,就是我写的;小李说:“细节决定成败”不是我写的.若三人的说法有且仅有一人是正确的,则“入班即静”的书写者是()A.小王或小李 B.小王 C.小董 D.小李7.已知函数,其图象关于直线对称,为了得到函数的图象,只需将函数的图象上的所有点()A.先向左平移个单位长度,再把所得各点横坐标伸长为原来的2倍,纵坐标保持不变B.先向右平移个单位长度,再把所得各点横坐标缩短为原来的,纵坐标保持不变C.先向右平移个单位长度,再把所得各点横坐标伸长为原来的2倍,纵坐标保持不变D.先向左平移个单位长度,再把所得各点横坐标缩短为原来的,纵坐标保持不变8.复数(为虚数单位),则等于()A.3 B.C.2 D.9.已知抛物线上的点到其焦点的距离比点到轴的距离大,则抛物线的标准方程为()A. B. C. D.10.已知函数,,若方程恰有三个不相等的实根,则的取值范围为()A. B.C. D.11.设M是边BC上任意一点,N为AM的中点,若,则的值为()A.1 B. C. D.12.已知实数满足,则的最小值为()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.若实数,满足,则的最小值为__________.14.能说明“若对于任意的都成立,则在上是减函数”为假命题的一个函数是________.15.在△ABC中,∠BAC=,AD为∠BAC的角平分线,且,若AB=2,则BC=_______.16.已知,为双曲线的左、右焦点,双曲线的渐近线上存在点满足,则的最大值为________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知,,求证:(1);(2).18.(12分)设椭圆的离心率为,圆与轴正半轴交于点,圆在点处的切线被椭圆截得的弦长为.(1)求椭圆的方程;(2)设圆上任意一点处的切线交椭圆于点,试判断是否为定值?若为定值,求出该定值;若不是定值,请说明理由.19.(12分)已知集合,集合,.(1)求集合B;(2)记,且集合M中有且仅有一个整数,求实数k的取值范围.20.(12分)已知函数,.(1)求函数的极值;(2)当时,求证:.21.(12分)平面直角坐标系中,曲线的参数方程为(为参数),以原点为极点,轴的非负半轴为极轴,取相同的单位长度建立极坐标系,曲线的极坐标方程为,直线的极坐标方程为,点.(1)求曲线的极坐标方程与直线的直角坐标方程;(2)若直线与曲线交于点,曲线与曲线交于点,求的面积.22.(10分)已知函数,其中.(1)讨论函数的零点个数;(2)求证:.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.A【解析】

由求出范围,结合正弦函数的图象零点特征,建立不等量关系,即可求解.【详解】当时,,∵在上有且仅有5个零点,∴,∴.故选:A.本题考查正弦型函数的性质,整体代换是解题的关键,属于基础题.2.D【解析】

根据三视图还原出几何体,找到最大面,再求面积.【详解】由三视图可知,该几何体是一个三棱锥,如图所示,将其放在一个长方体中,并记为三棱锥.,,,故最大面的面积为.选D.本题主要考查三视图的识别,复杂的三视图还原为几何体时,一般借助长方体来实现.3.B【解析】

模拟程序运行,观察变量值可得结论.【详解】循环前,循环时:,不满足条件;,不满足条件;,不满足条件;,不满足条件;,不满足条件;,满足条件,退出循环,输出.故选:B.本题考查程序框图,考查循环结构,解题时可模拟程序运行,观察变量值,从而得出结论.4.C【解析】

化简复数,分子分母同时乘以,进而求得复数,再求出,由此得到虚部.【详解】,,所以的虚部为.故选:C本小题主要考查复数的乘法、除法运算,考查共轭复数的虚部,属于基础题.5.C【解析】

由等差数列通项公式得,求出,再利用等差数列前项和公式能求出.【详解】正项等差数列的前项和,,,解得或(舍),,故选C.本题主要考查等差数列的性质与求和公式,属于中档题.解等差数列问题要注意应用等差数列的性质()与前项和的关系.6.D【解析】

根据题意,分别假设一个正确,推理出与假设不矛盾,即可得出结论.【详解】解:由题意知,若只有小王的说法正确,则小王对应“入班即静”,而否定小董说法后得出:小王对应“天道酬勤”,则矛盾;若只有小董的说法正确,则小董对应“天道酬勤”,否定小李的说法后得出:小李对应“细节决定成败”,所以剩下小王对应“入班即静”,但与小王的错误的说法矛盾;若小李的说法正确,则“细节决定成败”不是小李的,则否定小董的说法得出:小王对应“天道酬勤”,所以得出“细节决定成败”是小董的,剩下“入班即静”是小李的,符合题意.所以“入班即静”的书写者是:小李.故选:D.本题考查推理证明的实际应用.7.D【解析】

由函数的图象关于直线对称,得,进而得再利用图像变换求解即可【详解】由函数的图象关于直线对称,得,即,解得,所以,,故只需将函数的图象上的所有点“先向左平移个单位长度,得再将横坐标缩短为原来的,纵坐标保持不变,得”即可.故选:D本题考查三角函数的图象与性质,考查图像变换,考查运算求解能力,是中档题8.D【解析】

利用复数代数形式的乘除运算化简,从而求得,然后直接利用复数模的公式求解.【详解】,所以,,故选:D.该题考查的是有关复数的问题,涉及到的知识点有复数的乘除运算,复数的共轭复数,复数的模,属于基础题目.9.B【解析】

由抛物线的定义转化,列出方程求出p,即可得到抛物线方程.【详解】由抛物线y2=2px(p>0)上的点M到其焦点F的距离比点M到y轴的距离大,根据抛物线的定义可得,,所以抛物线的标准方程为:y2=2x.故选B.本题考查了抛物线的简单性质的应用,抛物线方程的求法,属于基础题.10.B【解析】

由题意可将方程转化为,令,,进而将方程转化为,即或,再利用的单调性与最值即可得到结论.【详解】由题意知方程在上恰有三个不相等的实根,即,①.因为,①式两边同除以,得.所以方程有三个不等的正实根.记,,则上述方程转化为.即,所以或.因为,当时,,所以在,上单调递增,且时,.当时,,在上单调递减,且时,.所以当时,取最大值,当,有一根.所以恰有两个不相等的实根,所以.故选:B.本题考查了函数与方程的关系,考查函数的单调性与最值,转化的数学思想,属于中档题.11.B【解析】

设,通过,再利用向量的加减运算可得,结合条件即可得解.【详解】设,则有.又,所以,有.故选B.本题考查了向量共线及向量运算知识,利用向量共线及向量运算知识,用基底向量向量来表示所求向量,利用平面向量表示法唯一来解决问题.12.A【解析】

所求的分母特征,利用变形构造,再等价变形,利用基本不等式求最值.【详解】解:因为满足,则,当且仅当时取等号,故选:.本题考查通过拼凑法利用基本不等式求最值.拼凑法的实质在于代数式的灵活变形,拼系数、凑常数是关键.(1)拼凑的技巧,以整式为基础,注意利用系数的变化以及等式中常数的调整,做到等价变形;(2)代数式的变形以拼凑出和或积的定值为目标(3)拆项、添项应注意检验利用基本不等式的前提.二、填空题:本题共4小题,每小题5分,共20分。13.【解析】

由约束条件先画出可行域,然后求目标函数的最小值.【详解】由约束条件先画出可行域,如图所示,由,即,当平行线经过点时取到最小值,由可得,此时,所以的最小值为.故答案为.本题考查了线性规划的知识,解题的一般步骤为先画出可行域,然后改写目标函数,结合图形求出最值,需要掌握解题方法.14.答案不唯一,如【解析】

根据对基本函数的理解可得到满足条件的函数.【详解】由题意,不妨设,则在都成立,但是在是单调递增的,在是单调递减的,说明原命题是假命题.所以本题答案为,答案不唯一,符合条件即可.本题考查对基本初等函数的图像和性质的理解,关键是假设出一个在上不是单调递减的函数,再检验是否满足命题中的条件,属基础题.15.【解析】

由,求出长度关系,利用角平分线以及面积关系,求出边,再由余弦定理,即可求解.【详解】,,,,.故答案为:.本题考查共线向量的应用、面积公式、余弦定理解三角形,考查计算求解能力,属于中档题.16.【解析】

设,由可得,整理得,即点在以为圆心,为半径的圆上.又点到双曲线的渐近线的距离为,所以当双曲线的渐近线与圆相切时,取得最大值,此时,解得.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(1)见解析;(2)见解析.【解析】

(1)结合基本不等式可证明;(2)利用基本不等式得,即,同理得其他两个式子,三式相加可证结论.【详解】(1)∵,∴,当且仅当a=b=c等号成立,∴;(2)由基本不等式,∴,同理,,∴,当且仅当a=b=c等号成立∴.本题考查不等式的证明,考查用基本不等式证明不等式成立.解题关键是发现基本不等式的形式,方法是综合法.18.(1);(2)见解析.【解析】

(I)结合离心率,得到a,b,c的关系,计算A的坐标,计算切线与椭圆交点坐标,代入椭圆方程,计算参数,即可.(II)分切线斜率存在与不存在讨论,设出M,N的坐标,设出切线方程,结合圆心到切线距离公式,得到m,k的关系式,将直线方程代入椭圆方程,利用根与系数关系,表示,结合三角形相似,证明结论,即可.【详解】(Ⅰ)设椭圆的半焦距为,由椭圆的离心率为知,,∴椭圆的方程可设为.易求得,∴点在椭圆上,∴,解得,∴椭圆的方程为.(Ⅱ)当过点且与圆相切的切线斜率不存在时,不妨设切线方程为,由(Ⅰ)知,,,∴.当过点且与圆相切的切线斜率存在时,可设切线的方程为,,∴,即.联立直线和椭圆的方程得,∴,得.∵,∴,,∴.综上所述,圆上任意一点处的切线交椭圆于点,都有.在中,由与相似得,为定值.本道题考查了椭圆方程的求解,考查了直线与椭圆位置关系,考查了向量的坐标运算,难度偏难.19.(1)(2)【解析】

(1)由不等式可得,讨论与的关系,即可得到结果;(2)先解得不等式,由集合M中有且仅有一个整数,当时,则M中仅有的整数为;当时,则M中仅有的整数为,进而求解即可.【详解】解:(1)因为,所以,当,即时,;当,即时,;当,即时,.(2)由得,当,即时,M中仅有的整数为,所以,即;当,即时,M中仅有的整数为,所以,即;综上,满足题意的k的范围为本题考查解一元二次不等式,考查由交集的结果求参数范围,考查分类讨论思想与运算能力.20.(1)的极小值为,无极大值.(2)见解析.【解析】

(1)对求导,确定函数单调性,得到函数极值.(2)构造函数,证明恒成立,得到,,得证.【详解】(1)由题意知,,令,得,令,得.则在上单调递减,在上单调递增,所以的极小值为,无极大值.(2)当时,要证,即证.令,则,令,得,令,得,则在上单调递减,在上单调递增,所以当时,,所以,即.因为时,,所以当时,,所以当时,不等式成立.本题考查了函数的单调性,极值,不等式的证明,构造函数是解题的关键.21.(1).(2)【解析】

(1)根据题意代入公式化简即可得到.(2)联立极坐标方程通过极坐标的几何意义求解,再求点到直线的距离即可算出三角形面积.【详解】解:(1)曲线,即.∴.曲线的极坐标方程为.直线的极坐标方程为,即,∴直线的直角坐标方程为.(2)设,,∴,解得.又,∴(舍去).∴.点到直线的距离为,∴的面积为.此题考查参数方程,极坐标,直角坐标之间相互转化,注意参数方程只能先转化为直角坐标再转化为极坐标,属于较易题目.22.(1)时,有一个零点;当且时

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论