宁德市八年级数学试卷易错易错压轴勾股定理选择题练习题(附答案)_第1页
宁德市八年级数学试卷易错易错压轴勾股定理选择题练习题(附答案)_第2页
宁德市八年级数学试卷易错易错压轴勾股定理选择题练习题(附答案)_第3页
宁德市八年级数学试卷易错易错压轴勾股定理选择题练习题(附答案)_第4页
宁德市八年级数学试卷易错易错压轴勾股定理选择题练习题(附答案)_第5页
已阅读5页,还剩19页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

宁德市八年级数学试卷易错易错压轴选择题精选:勾股定理选择题练习题(附答案)(1)一、易错易错压轴选择题精选:勾股定理选择题1.《九章算术》是我国古代第一部数学专著,它的出现标志中国古代数学形成了完整的体系.“折竹抵地”问题源自《九章算术》中:“今有竹高一丈,末折抵地,去本四尺,问折者高几何?”翻译成数学问题是:如图所示,中,,尺,尺,求的长.的长为()A.3尺 B.4.2尺 C.5尺 D.4尺2.在Rt△ABC中,∠C=90°,∠A=30°,BD是∠ABC的平分线,交AC于点D,若CD=1,则AB的长是()A.2 B. C. D.43.一艘渔船从港口A沿北偏东60°方向航行至C处时突然发生故障,在C处等待救援.有一救援艇位于港口A正东方向20(﹣1)海里的B处,接到求救信号后,立即沿北偏东45°方向以30海里/小时的速度前往C处救援.则救援艇到达C处所用的时间为()A.小时 B.小时 C.小时 D.小时4.如图,是一长、宽都是3cm,高BC=9cm的长方体纸箱,BC上有一点P,PC=BC,一只蚂蚁从点A出发沿纸箱表面爬行到点P的最短距离是()A.6cm B.3cm C.10cm D.12cm5.直角三角形的面积为,斜边上的中线为,则这个三角形周长为()A. B.C. D.6.如果正整数a、b、c满足等式,那么正整数a、b、c叫做勾股数.某同学将自己探究勾股数的过程列成下表,观察表中每列数的规律,可知的值为()A.47 B.62 C.79 D.987.如图,在中,,的平分线与边相交于点,,垂足为,若的周长为6,则的面积为().A.36 B.18 C.12 D.98.已知,如图,,点分别是的角平分线,边上的两个动点,,,则的最小值是()A.3 B. C.4 D.9.△ABC中,AB=15,AC=13,高AD=12,则△ABC的周长为()A.42 B.32 C.42或32 D.37或3310.“勾股图”有着悠久的历史,它曾引起很多人的兴趣.1955年希腊发行了以“勾股图”为背景的邮票(如图1),欧几里得在《几何原本》中曾对该图做了深入研究.如图2,在中,,分别以的三条边为边向外作正方形,连结,,,分别与,相交于点,.若,则的值为()A. B. C. D.11.如图,在△ABC和△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,点C,D,E在同一条直线上,连接B,D和B,E.下列四个结论:①BD=CE,②BD⊥CE,③∠ACE+∠DBC=30°,④.其中,正确的个数是()A.1 B.2 C.3 D.412.如图,已知AB是⊙O的弦,AC是⊙O的直径,D为⊙O上一点,过D作⊙O的切线交BA的延长线于P,且DP⊥BP于P.若PD+PA=6,AB=6,则⊙O的直径AC的长为()A.5 B.8 C.10 D.1213.如图,西安路与南京路平行,并且与八一街垂直,曙光路与环城路垂直.如果小明站在南京路与八一街的交叉口,准备去书店,按图中的街道行走,最近的路程约为()A.600m B.500mC.400m D.300m14.如图,在中,平分,平分,且交于,若,则的值为A.36 B.9 C.6 D.1815.下列命题中,是假命题的是()A.在△ABC中,若∠A:∠B:∠C=1:2:3,则△ABC是直角三角形B.在△ABC中,若a2=(b+c)(b-c),则△ABC是直角三角形C.在△ABC中,若∠B=∠C=∠A,则△ABC是直角三角形D.在△ABC中,若a:b:c=5:4:3,则△ABC是直角三角形16.为了庆祝国庆,八年级(1)班的同学做了许多拉花装饰教室,小玲抬来一架2.5米长的梯子,准备将梯子架到2.4米高的墙上,则梯脚与墙角的距离是()A.0.6米 B.0.7米 C.0.8米 D.0.9米17.如图,在Rt△ABC中,∠A=90°,AB=6,AC=8,现将Rt△ABC沿BD进行翻折,使点A刚好落在BC上,则CD的长为(

)A.10 B.5 C.4 D.318.甲、乙两艘轮船同时从港口出发,甲以16海里/时的速度向北偏东的方向航行,它们出发1.5小时后,两船相距30海里,若乙以12海里/时的速度航行,则它的航行方向为()A.北偏西 B.南偏西75°C.南偏东或北偏西 D.南偏西或北偏东19.如图,等腰直角三角形纸片ABC中,∠C=90°,把纸片沿EF对折后,点A恰好落在BC上的点D处,若CE=1,AB=4,则下列结论一定正确的个数是()①BC=CD;②BD>CE;③∠CED+∠DFB=2∠EDF;④△DCE与△BDF的周长相等;A.1个 B.2个 C.3个 D.4个20.以下列各组数为边长,能构成直角三角形的是A. B.、、C.、、 D.、、21.已知直角三角形的两条边长分别是3和5,那么这个三角形的第三条边的长()A.4 B.16 C. D.4或22.下列条件中,不能判定为直角三角形的是()A. B.C. D.,,23.已知是的三边,且满足,则是()A.直角三角形 B.等边三角形C.等腰直角三角形 D.等腰三角形或直角三角形24.如图,在数轴上点所表示的数为,则的值为()A. B. C. D.25.下列长度的三条线段能组成直角三角形的是()A.9,7,12 B.2,3,4 C.1,2, D.5,11,1226.“折竹抵地”问题源自《九章算术》中,即:今有竹高一丈,末折抵地,去本四尺,问折者高几何?意思是:一根竹子,原高一丈,一阵风将竹子折断,其竹梢恰好抵地,抵地处离竹子底部4尺远(如图),则折断后的竹子高度为多少尺?(1丈=10尺)()A.3 B.5 C. D.427.棱长分别为的两个正方体如图放置,点A,B,E在同一直线上,顶点G在棱BC上,点P是棱的中点.一只蚂蚁要沿着正方体的表面从点A爬到点P,它爬行的最短距离是()A. B. C. D.28.如图,在矩形纸片ABCD中,AD=9,AB=3,将其折叠,使点D与点B重合,折痕为EF,那么折痕EF的长为()A.3 B. C. D.929.如图,在的正方形网格中,的度数是()A.22.5° B.30° C.45° D.60°30.我国古代数学家刘徽将勾股形(古人称直角三角形为勾股形)分割成一个正方形和两对全等的三角形,如图所示,已知正方形的边长是,,则的长为()A. B. C. D.【参考答案】***试卷处理标记,请不要删除一、易错易错压轴选择题精选:勾股定理选择题1.B解析:B【分析】竹子折断后刚好构成一直角三角形,设竹子折断处离地面尺,则斜边为尺,利用勾股定理解题即可.【详解】解:设竹子折断处离地面尺,则斜边为尺,根据勾股定理得:.解得:,折断处离地面的高度为4.2尺,故选:.【点睛】此题考查了勾股定理的应用,解题的关键是利用题目信息构造直角三角形,从而运用勾股定理解题.2.B解析:B【分析】根据30°直角三角形的性质,求出∠ABC的度数,然后根据角平分线的性质求出∠CBD=30°,再根据30°角所对的直角三角形性质,30°角所对的直角边等于斜边的一半,求解即可.【详解】如图∵∠C=90°,∠A=30°,∴∠ABC=90°-30°=60°,∵BD平分∠ABC,∴∠ABD=∠ABC=×60°=30°,∵CD=1,∠CDB=30°∴BD=2根据勾股定理可得BC=∵∠A=30°∴AB=2故选B.【点睛】此题主要考查了30°角直角三角形的性质的应用,关键是根据题意画出图形,再利用30°角所对直角边等于斜边的一半求解.3.C解析:C【解析】【分析】过点C作CD垂直AB延长线于D,根据题意得∠CDB=45°,∠CAD=30°,设BD=x则CD=BD=x,BC=x,由∠CAD=30°可知tan∠CAD=即,解方程求出BD的长,从而可知BC的长,进而求出救援艇到达C处所用的时间即可.【详解】如图:过点C作CD垂直AB延长线于D,则∠CDB=45°,∠CAD=30°,∵∠CDB=45°,CD⊥BD,∴BD=CD,设BD=x,救援艇到达C处所用的时间为t,∵tan∠CAD=,AD=AB+BD,∴,得x=20(海里),∴BC=BD=20(海里),∴t==(小时),故选C.【点睛】本题考查特殊角三角函数,正确添加辅助线、熟练掌握特殊角的三角函数值是解题关键.4.A解析:A【解析】【分析】将图形展开,可得到安排AP较短的展法两种,通过计算,得到较短的即可.【详解】解:(1)如图1,AD=3cm,DP=3+6=9cm,在Rt△ADP中,AP==3cm((2)如图2,AC=6cm,CP=6cm,Rt△ADP中,AP==cm综上,蚂蚁从点A出发沿纸箱表面爬行到点P的最短距离是cm.故选A.【点睛】题考查了平面展开--最短路径问题,熟悉平面展开图是解题的关键.5.D解析:D【解析】【分析】根据直角三角形的性质求出斜边长,根据勾股定理、完全平方公式计算即可。【详解】解:设直角三角形的两条直角边分别为x、y,∵斜边上的中线为d,∴斜边长为2d,由勾股定理得,x2+y2=4d2,∵直角三角形的面积为S,∴,则2xy=4S,即(x+y)2=4d2+4S,∴∴这个三角形周长为:,故选:D.【点睛】本题考查的是勾股定理的应用,直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2.6.C解析:C【分析】依据每列数的规律,即可得到,进而得出的值.【详解】解:由题可得:……当故选C【点睛】本题为勾股数与数列规律综合题;观察数列,找出规律是解答本题的关键.7.D解析:D【分析】利用角平分定理得到DE=AD,根据三角形内角和得到∠BDE=∠BDA,再利用角平分线定理得到BE=AB=AC,根据的周长为6求出AB=6,再根据勾股定理求出,即可求得的面积.【详解】∵,∴AB⊥AD,∵,平分,∴DE=AD,∠BED=,∴∠BDE=∠BDA,∴BE=AB=AC,∵的周长为6,∴DE+CD+CE=AC+CE=BC=6,∵∴,∴,,∴的面积=,故选:D.【点睛】此题考查角平分线定理的运用,勾股定理求边长,在利用角平分线定理时必须是两个垂直一个平分同时运用,得到到角两边的距离相等的结论.8.D解析:D【分析】先根据等腰三角形的性质得出是线段垂直平分线,再根据垂直平分线的性质、两点之间线段最短得出最小值为,最后根据垂线段最短、直角三角形的性质得出BE的最小值即可得.【详解】如图,作,交AC于点E,∵AD平分∠BAC,∴∠BAD=∠CAD,是线段垂直平分线(等腰三角形的三线合一)由两点之间线段最短得:当点共线时,最小,最小值为点都是动点随点的运动而变化由垂线段最短得:当时,取得最小值在中,即的最小值为故选:D.【点睛】本题考查了等腰三角形的性质、垂直平分线的性质、两点之间线段最短等知识点,利用两点之间线段最短和垂线段最短确认的最小值是解题关键.9.C解析:C【分析】存在2种情况,△ABC是锐角三角形和钝角三角形时,高AD分别在△ABC的内部和外部【详解】情况一:如下图,△ABC是锐角三角形∵AD是高,∴AD⊥BC∵AB=15,AD=12∴在Rt△ABD中,BD=9∵AC=13,AD=12∴在Rt△ACD中,DC=5∴△ABC的周长为:15+12+9+5=42情况二:如下图,△ABC是钝角三角形在Rt△ADC中,AD=12,AC=13,∴DC=5在Rt△ABD中,AD=12,AB=15,∴DB=9∴BC=4∴△ABC的周长为:15+13+4=32故选:C【点睛】本题考查勾股定理,解题关键是多解,注意当几何题型题干未提供图形时,往往存在多解情况.10.D解析:D【分析】先用已知条件利用SAS的三角形全等的判定定理证出△EAB≌△CAM,之后利用全等三角形的性质定理分别可得,,,然后设,继而可分别求出,,所以;易证Rt△ACB≌Rt△DCG(HL),从而得,然后代入所求数据即可得的值.【详解】解:∵在△EAB和△CAM中,,∴△EAB≌△CAM(SAS),∴,∴,∴,,设,则,,,,∴;∵在Rt△ACB和Rt△DCG中,,Rt△ACB≌Rt△DCG(HL),∴;∴.故选D.【点睛】本题主要考查了勾股定理,三角形全等的判定定理和性质定理等知识.11.B解析:B【分析】①由AB=AC,AD=AE,利用等式的性质得到夹角相等,利用SAS得出三角形ABD与三角形ACE全等,由全等三角形的对应边相等得到BD=CE;②由三角形ABD与三角形ACE全等,得到一对角相等,再利用等腰直角三角形的性质及等量代换得到BD垂直于CE;③由等腰直角三角形的性质得到∠ABD+∠DBC=45°,等量代换得到∠ACE+∠DBC=45°;④由BD垂直于CE,在直角三角形BDE中,利用勾股定理列出关系式,等量代换即可作出判断.【详解】解:如图,①∵∠BAC=∠DAE=90°,∴∠BAC+∠CAD=∠DAE+∠CAD,即∠BAD=∠CAE,∵在△BAD和△CAE中,∴△BAD≌△CAE(SAS),∴BD=CE,故①正确;②∵△BAD≌△CAE,∴∠ABD=∠ACE,∵∠ABD+∠DBC=45°,∴∠ACE+∠DBC=45°,∴∠DBC+∠DCB=∠DBC+∠ACE+∠ACB=45°+45°=90°,∴∠BDC=90°,∴BD⊥CE,故②正确;③∵△ABC为等腰直角三角形,∴∠ABC=∠ACB=45°,∴∠ABD+∠DBC=45°,∵∠ABD=∠ACE∴∠ACE+∠DBC=45°,故③错误;④∵BD⊥CE,∴在Rt△BDE中,利用勾股定理得BE2=BD2+DE2,∵△ADE为等腰直角三角形,∴AE=AD,∴DE2=2AD2,∴BE2=BD2+DE2=BD2+2AD2,在Rt△BDC中,,而BC2=2AB2,∴BD2<2AB2,∴故④错误,综上,正确的个数为2个.故选:B.【点睛】此题考查了全等三角形的判定与性质,勾股定理,以及等腰直角三角形的性质,熟练掌握全等三角形的判定与性质是解本题的关键.12.C解析:C【解析】分析:通过切线的性质表示出EC的长度,用相似三角形的性质表示出OE的长度,由已知条件表示出OC的长度即可通过勾股定理求出结果.详解:如图:连接BC,并连接OD交BC于点E:∵DP⊥BP,AC为直径;∴∠DPB=∠PBC=90°.∴PD∥BC,且PD为⊙O的切线.∴∠PDE=90°=∠DEB,∴四边形PDEB为矩形,∴AB∥OE,且O为AC中点,AB=6.∴PD=BE=EC.∴OE=AB=3.设PA=x,则OD=DE-OE=6+x-3=3+x=OC,EC=PD=6-x..在Rt△OEC中:,即:,解得x=2.所以AC=2OC=2×(3+x)=10.点睛:本题考查了切线的性质,相似三角形的性质,勾股定理.13.B解析:B【分析】由于BC∥AD,那么有∠DAE=∠ACB,由题意可知∠ABC=∠DEA=90°,BA=ED,利用AAS可证△ABC≌△DEA,于是AE=BC=300,再利用勾股定理可求AC,即可求CE,根据图可知从B到E的走法有两种,分别计算比较即可.【详解】解:如右图所示,∵BC∥AD,∴∠DAE=∠ACB,又∵BC⊥AB,DE⊥AC,∴∠ABC=∠DEA=90°,又∵AB=DE=400m,∴△ABC≌△DEA,∴EA=BC=300m,在Rt△ABC中,AC==500m,∴CE=AC-AE=200,从B到E有两种走法:①BA+AE=700m;②BC+CE=500m,∴最近的路程是500m.故选B.【点睛】本题考查了平行线的性质、全等三角形的判定和性质、勾股定理.解题的关键是证明△ABC≌△DEA,并能比较从B到E有两种走法.14.A解析:A【分析】先根据角平分线的定义、角的和差可得,再根据平行线的性质、等量代换可得,然后根据等腰三角形的定义可得,从而可得,最后在中,利用勾股定理即可得.【详解】平分,平分,,,,,,,,在中,由勾股定理得:,故选:A.【点睛】本题考查了角平分线的定义、平行线的性质、等腰三角形的定义、勾股定理等知识点,熟练掌握等腰三角形的定义是解题关键.15.C解析:C【分析】一个三角形中有一个直角,或三边满足勾股定理的逆定理则为直角三角形,否则则不是,据此依次分析各项即可.【详解】A.△ABC中,若∠B=∠C-∠A,则∠C=∠A+∠B,则△ABC是直角三角形,本选项正确;B.△ABC中,若a2=(b+c)(b-c),则a2=b2-c2,b2=a2+c2,则△ABC是直角三角形,本选项正确;C.△ABC中,若∠A∶∠B∶∠C=3∶4∶5,则∠,故本选项错误;D.△ABC中,若a∶b∶c=5∶4∶3,则△ABC是直角三角形,本选项正确;故选C.【点睛】本题考查的是直角三角形的判定,利用勾股定理的逆定理判断一个三角形是否是直角三角形的一般步骤:①确定三角形的最长边;②分别计算出最长边的平方与另两边的平方和;③比较最长边的平方与另两边的平方和是否相等.若相等,则此三角形是直角三角形;否则,就不是直角三角形.16.B解析:B【解析】试题解析:依题意得:梯子、地面、墙刚好形成一直角三角形,梯高为斜边,利用勾股定理得:梯脚与墙角距离:=0.7(米).故选B.17.B解析:B【分析】根据“在Rt△ABC中”和“沿BD进行翻折”可知,本题考察勾股定理和翻折问题,根据勾股定理和翻折的性质,运用方程的方法进行求解.【详解】∵∠A=90°,AB=6,AC=8,∴BC==10,根据翻折的性质可得A′B=AB=6,A′D=AD,∴A′C=10-6=4.设CD=x,则A′D=8-x,根据勾股定理可得x2-(8-x)2=42,解得x=5,故CD=5.故答案为:B.【点睛】本题考察勾股定理和翻折问题,根据勾股定理把求线段的长的问题转化为方程问题是解决本题的关键.18.C解析:C【分析】先求出出发1.5小时后,甲乙两船航行的路程,进而可根据勾股定理的逆定理得出乙船的航行方向与甲船的航行方向垂直,进一步即可得出答案.【详解】解:出发1.5小时后,甲船航行的路程是16×1.5=24海里,乙船航行的路程是12×1.5=18海里;∵,∴乙船的航行方向与甲船的航行方向垂直,∵甲船的航行方向是北偏东75°,∴乙船的航行方向是南偏东15°或北偏西15°.故选:C.【点睛】本题考查了勾股定理的逆定理和方位角,属于常考题型,正确理解题意、熟练掌握勾股定理的逆定理是解题的关键.19.D解析:D【分析】利用等腰直角三角形的相关性质运用勾股定理以及对应角度的关系来推导对应选项的结论即可.【详解】解:由AB=4可得AC=BC=4,则AE=3=DE,由勾股定理可得CD=2,①正确;BD=4-2,②正确;由∠A=∠EDF=45°,则2∠EDF=90°,∠CED=90°-∠CDE=90°-(∠CDF-45°)=135°-∠CDF=135°-(∠DFB+45°)=90°-∠DFB,故∠CED+∠DFB=90°=2∠EDF,③正确;△DCE的周长=CD+CE+DE=2+4,△BDF的周长=BD+BF+DF=BD+AB=4+4-2=4+2,④正确;故正确的选项有4个,故选:D.【点睛】本题主要考查等腰直角三角形的相关性质以及勾股定理的运用,本题涉及的等腰直角三角形、翻折、勾股定理以及边角关系,需要熟练地掌握对应性质以及灵活的运用.20.C解析:C【分析】利用勾股定理的逆定理依次计算各项后即可解答.【详解】选项A,,不能构成直角三角形;选项B,,不能构成直角三角形;选项C,,能构成直角三角形;选项D,,不能构成直角三角形.故选C.【点睛】本题考查勾股定理的逆定理的应用判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.21.D解析:D【解析】试题解析:当3和5都是直角边时,第三边长为:=;当5是斜边长时,第三边长为:=4.故选D.22.D解析:D【分析】由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方或最大角是否是即可.【详解】解:、,是直角三角形,故能判定是直角三角形;、,,故能判定是直角三角形;、,,故能判定是直角三角形;、,不是直角三角形,故不能判定是直角三角形;故选:.【点睛】本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,可利用勾股定理的逆定理和直角三角形的定义判断.23.D解析:D【分析】由(a-b)(a2-b2-c2)=0,可得:a-b=0,或a2-b2-c2=0,进而可得a=b或a2=b2+c2,进而判断△ABC的形状为等腰三角形或直角三角形.【详解】解:∵(a-b)(a2-b2-c2)=0,∴a-b=0,或a2-b2-c2=0,即a=b或a2=b2+c2,∴△ABC的形状为等腰三角形或直角三角形.故选:D.【点睛】本题考查了勾股定理的逆定理以及等腰三角形的判定,解题时注意:有两边相等的三角形是等腰三角形,满足a2+b2=c2的三角形是直角三角形.24.A解析:A【分析】首先根据勾股定理得出圆弧的半径,然后得出点A的坐标.【详解】解:∴由图可知:点A所表示的数为:故选:A【点睛】本题主要考查的就是数轴上点所表示的数,属于基础题型.解决这个问题的关键就是求出斜边的长度.在数轴上两点之间的距离是指两点所表示的数的差的绝对值.25.C解析:C【分析】利用勾股定理的逆定理:如果三角形两条边的平方和等于第三边的平方,那么这个三角形就是直角三角形.最长边所对的角为直角.由此判定即可.【详解】解:A、因为92+72≠122,所以三条线段不能组成直角三角形;B、因为22+32≠42,所以三条线段不能组成直角三角形;C、因为12+2=22,所以三条线段能组成直角三角形;D、因为52+112≠122,所以三条线段不能组成直角三角形.故选C.【点睛】此题考查勾股定理逆定理的运用,注意数据的计算.26.C解析:C【分析】根据题意结合勾股定理得出折断处离地面的长度即可.【详解】解:设折断处离地面的高度OA是x尺,根据题意可得:x2+42=(10-x)2,解得:x=4.2,答:折断处离地面的高度OA是4.2尺.故选C

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论