版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
天津市八年级数学试卷易错易错压轴选择题精选:勾股定理选择题复习题(附答案)一、易错易错压轴选择题精选:勾股定理选择题1.如图,“赵爽弦图”是由四个全等的直角三角形和一个小正方形构成的大正方形,若直角三角形的两直角边长分别为和,则小正方形的面积为()A.4 B.3 C.2 D.12.若直角三角形的三边长分别为、a、,且a、b都是正整数,则三角形其中一边的长可能为()A.22 B.32 C.62 D.823.在平面直角坐标系中,已知平行四边形ABCD的点A(0,﹣2)、点B(3m,4m+1)(m≠﹣1),点C(6,2),则对角线BD的最小值是()A.3 B.2 C.5 D.64.如果直角三角形的三条边为3、4、a,则a的取值可以有()A.0个 B.1个 C.2个 D.3个5.如图,在中,cm,cm,点D、E分别在AC、BC上,现将沿DE翻折,使点C落在点处,连接,则长度的最小值()A.不存在 B.等于1cmC.等于2cm D.等于2.5cm6.如图,在等腰三角形ABC中,AC=BC=5,AB=8,D为底边上一动点(不与点A,B重合),DE⊥AC,DF⊥BC,垂足分别为E、F,则DE+DF=()A.5 B.8 C.13 D.4.87.如图,等边的边长为,,分别是,上的两点,将沿直线折叠,点落在点处,且点在外部,则阴影部分图形的周长为()A. B. C. D.8.如图,将一个等腰直角三角形按图示方式依次翻折,若,则下列说法正确的是()①平分;②长为;③是等腰三角形;④的周长等于的长.A.①②③ B.②④ C.②③④ D.③④9.△ABC中,AB=15,AC=13,高AD=12,则△ABC的周长为()A.42 B.32 C.42或32 D.37或3310.如图,等腰直角△ABC中,∠C=90°,点F是AB边的中点,点D、E分别在AC、BC边上运动,且∠DFE=90°,连接DE、DF、EF,在此运动变化过程中,下列结论:①图中全等的三角形只有两对;②△ABC的面积是四边形CDFE面积的2倍;③CD+CE=2FA;④AD2+BE2=DE2.其中错误结论的个数有( )A.1个 B.2个 C.3个 D.4个11.如图,西安路与南京路平行,并且与八一街垂直,曙光路与环城路垂直.如果小明站在南京路与八一街的交叉口,准备去书店,按图中的街道行走,最近的路程约为()A.600m B.500mC.400m D.300m12.如图,A、B两点在直线l的两侧,点A到直线l的距离AC=4,点B到直线l的距离BD=2,且CD=6,P为直线CD上的动点,则的最大值是()A. B. C. D.613.如果下列各组数是三角形的三边,那么不能组成直角三角形的一组数是()A. B. C. D.14.如图,中,,,.设长是,下列关于的四种说法:①是无理数;②可以用数轴上的一个点来表示;③是13的算术平方根;④.其中所有正确说法的序号是()A.①② B.①③C.①②③ D.②③④15.如图,2002年8月在北京召开的国际数学家大会会徽取材于我国古代数学家赵爽的《勾股圆方图》(也称《赵爽弦图》),它是由四个全等的直角三角形与中间的一个小正方形拼成的一个大正方形,如图所示,如果大正方形的面积是13,小正方形的面积是1,直角三角形的短直角边为a,较长直角边为b,那么的值为()A.13 B.19 C.25 D.16916.一个直角三角形两边长分别是和,则第三边的长是()A. B.或 C.或 D.17.如图,有一张直角三角形纸片,两直角边AC=6cm,BC=8cm,D为BC边上的一点,现将直角边AC沿直线AD折叠,使AC落在斜边AB上,且与AE重合,则CD的长为()A.2cm B.2.5cm C.3cm D.4cm18.如图,有一块直角三角形纸片,两直角边,.现将直角边沿直线折叠,使它落在斜边上,且与重合,则等于()A. B. C. D.19.已知是的三边,且满足,则是()A.直角三角形 B.等边三角形C.等腰直角三角形 D.等腰三角形或直角三角形20.如图,在等腰Rt△ABC中,∠C=90°,AC=7,∠BAC的角平分线AD交BC于点D,则点D到AB的距离是( )A.3 B.4 C. D.21.如图,已知,则数轴上点所表示的数为()A. B. C. D.22.下列命题中,是假命题的是()A.在△ABC中,若∠A:∠B:∠C=1:2:3,则△ABC是直角三角形B.在△ABC中,若a2=(b+c)(b-c),则△ABC是直角三角形C.在△ABC中,若∠B=∠C=∠A,则△ABC是直角三角形D.在△ABC中,若a:b:c=5:4:3,则△ABC是直角三角形23.如图,在中,,,边上的中线,请试着判定的形状是()A.直角三角形 B.等边三角形 C.等腰三角形 D.以上都不对24.如图,BD为的对角线,于点E,BF⊥DC于点F,DE、BF相交于点H,直线BF交线段AD的延长线于点G,下列结论:①;②;③AB=BH;④;⑤;其中正确的结论有()A.①②③ B.②③⑤ C.①⑤ D.③④25.如图,在矩形ABCD中,BC=6,CD=3,将△BCD沿对角线BD翻折,点C落在点处,B交AD于点E,则线段DE的长为()A.3 B. C.5 D.26.如图,设正方体ABCD-A1B1C1D1的棱长为1,黑、白两个甲壳虫同时从点A出发,以相同的速度分别沿棱向前爬行,黑甲壳虫爬行的路线是AA1→A1D1→…,白甲壳虫爬行的路线是AB→BB1→…,并且都遵循如下规则:所爬行的第n+2与第n条棱所在的直线必须既不平行也不相交(其中n是正整数).那么当黑、白两个甲壳虫各爬行完第2017条棱分别停止在所到的正方体顶点处时,它们之间的距离是()A.0 B.1 C. D.27.如图,AB=AC,∠CAB=90°,∠ADC=45°,AD=1,CD=3,则BD的长为()A.3 B. C.2 D.428.一个直角三角形的两条边的长度分别为3和4,则它的斜边长为()A.5 B.4 C. D.4或529.以下列各组数为边长,能组成直角三角形的是()A.1,2,3 B.2,3,4 C.3,4,6 D.1,,230.A、B、C分别表示三个村庄,米,米,米,某社区拟建一个文化活动中心,要求这三个村庄到活动中心的距离相等,则活动中心P的位置应在()A.AB的中点 B.BC的中点C.AC的中点 D.的平分线与AB的交点【参考答案】***试卷处理标记,请不要删除一、易错易错压轴选择题精选:勾股定理选择题1.A解析:A【分析】根据直角三角形的两直角边长分别为和,可计算出正方形的边长,从而得出正方形的面积.【详解】解:3和5为两条直角边长时,小正方形的边长=5-3=2,∴小正方形的面积22=4;综上所述:小正方形的面积为4;故答案选A.【点睛】本题考查了勾股定理及其应用,正确表示出直角三角形的面积是解题的关键.2.B解析:B【解析】由题可知(a-b)2+a2=(a+b)2,解得a=4b,所以直角三角形三边分别为3b,4b,5b,当b=8时,4b=32,故选B.3.D解析:D【分析】先根据B(3m,4m+1),可知B在直线y=x+1上,所以当BD⊥直线y=x+1时,BD最小,找一等量关系列关于m的方程,作辅助线:过B作BH⊥x轴于H,则BH=4m+1,利用三角形相似得BH2=EH•FH,列等式求m的值,得BD的长即可.【详解】解:如图,∵点B(3m,4m+1),∴令,∴y=x+1,∴B在直线y=x+1上,∴当BD⊥直线y=x+1时,BD最小,过B作BH⊥x轴于H,则BH=4m+1,∵BE在直线y=x+1上,且点E在x轴上,∴E(−,0),G(0,1)∵F是AC的中点∵A(0,−2),点C(6,2),∴F(3,0)在Rt△BEF中,∵BH2=EH⋅FH,∴(4m+1)2=(3m+)(3−3m)解得:m1=−(舍),m2=,∴B(,),∴BD=2BF=2×=6,则对角线BD的最小值是6;故选:D.【点睛】本题考查了平行四边形的性质,利用待定系数法求一次函数的解析式,三角形相似的判定,圆形与坐标特点,勾股定理等知识点.本题利用点B的坐标确定其所在的直线的解析式是关键.4.C解析:C【解析】【分析】根据勾股定理求解即可,注意要确认a是直角边还是斜边.【详解】解:当a是直角三角形的斜边时,;当a为直角三角形的直角边时,.故选C.【点睛】本题考查的是勾股定理,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解答此题的关键.5.C解析:C【分析】当C′落在AB上,点B与E重合时,AC'长度的值最小,根据勾股定理得到AB=5cm,由折叠的性质知,BC′=BC=3cm,于是得到结论.【详解】解:当C′落在AB上,点B与E重合时,AC'长度的值最小,∵∠C=90°,AC=4cm,BC=3cm,∴AB=5cm,由折叠的性质知,BC′=BC=3cm,∴AC′=AB-BC′=2cm.故选:C.【点睛】本题考查了翻折变换(折叠问题),勾股定理,熟练掌握折叠的性质是解题的关键.6.D解析:D【分析】过点C作CH⊥AB,连接CD,根据等腰三角形的三线合一的性质及勾股定理求出CH,再利用即可求出答案.【详解】如图,过点C作CH⊥AB,连接CD,∵AC=BC,CH⊥AB,AB=8,∴AH=BH=4,∵AC=5,∴,∵,∴,∴,∴DE+DF=4.8,故选:D.【点睛】此题考查等腰三角形三线合一的性质,勾股定理解直角三角形,根据题意得到的思路是解题的关键,依此作辅助线解决问题.7.D解析:D【分析】根据折叠的性质可得AD=A'D,AE=A'E,易得阴影部分图形的周长为=AB+BC+AC,则可求得答案.【详解】解:因为等边三角形ABC的边长为1cm,所以AB=BC=AC=1cm,因为△ADE沿直线DE折叠,点A落在点A'处,所以AD=A'D,AE=A'E,所以阴影部分图形的周长=BD+A'D+BC+A'E+EC=BD+AD+BC+AE+EC=AB+BC+AC=1+1+1=3(cm).故选:D.【点睛】此题考查了折叠的性质与等边三角形的性质.此题难度适中,注意掌握数形结合思想与转化思想的应用以及折叠前后图形的对应关系.8.B解析:B【分析】根据折叠前后得到对应线段相等,对应角相等判断①③④式正误即可,根据等腰直角三角形性质求BC和DE的关系.【详解】解:根据折叠的性质知,△,且都是等腰直角三角形,∴,,∴不能平分①错误;,,,,,②正确;,,,,不是等腰三角形,故③错误;的周长,故④正确.故选:.【点睛】本题利用了:①折叠的性质:折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等;②等腰直角三角形,三角形外角与内角的关系,等角对等边等知识点.9.C解析:C【分析】存在2种情况,△ABC是锐角三角形和钝角三角形时,高AD分别在△ABC的内部和外部【详解】情况一:如下图,△ABC是锐角三角形∵AD是高,∴AD⊥BC∵AB=15,AD=12∴在Rt△ABD中,BD=9∵AC=13,AD=12∴在Rt△ACD中,DC=5∴△ABC的周长为:15+12+9+5=42情况二:如下图,△ABC是钝角三角形在Rt△ADC中,AD=12,AC=13,∴DC=5在Rt△ABD中,AD=12,AB=15,∴DB=9∴BC=4∴△ABC的周长为:15+13+4=32故选:C【点睛】本题考查勾股定理,解题关键是多解,注意当几何题型题干未提供图形时,往往存在多解情况.10.B解析:B【分析】结论①错误,因为图中全等的三角形有3对;结论②正确,由全等三角形的性质可以判断;结论③错误,利用全等三角形和等腰直角三角形的性质可以判断;结论④正确,利用全等三角形的性质以及直角三角形的勾股定理进行判断.【详解】连接CF,交DE于点P,如下图所示结论①错误,理由如下:图中全等的三角形有3对,分别为△AFC≌△BFC,△AFD≌△CFE,△CFD≌△BFE.由等腰直角三角形的性质,可知FA=FC=FB,易得△AFC≌△BFC.∵FC⊥AB,FD⊥FE,∴∠AFD=∠CFE.∴△AFD≌△CFE(ASA).同理可证:△CFD≌△BFE.结论②正确,理由如下:∵△AFD≌△CFE,∴S△AFD=S△CFE,∴S四边形CDFE=S△CFD+S△CFE=S△CFD+S△AFD=S△AFC=S△ABC,即△ABC的面积等于四边形CDFE的面积的2倍.结论③错误,理由如下:∵△AFD≌△CFE,∴CE=AD,∴CD+CE=CD+AD=AC=FA.结论④正确,理由如下:∵△AFD≌△CFE,∴AD=CE;∵△CFD≌△BFE,∴BE=CD.在Rt△CDE中,由勾股定理得:,∴.故选B.【点睛】本题是几何综合题,考查了等腰直角三角形、全等三角形和勾股定理等重要几何知识点,综合性比较强.解决这个问题的关键在于利用全等三角形的性质.11.B解析:B【分析】由于BC∥AD,那么有∠DAE=∠ACB,由题意可知∠ABC=∠DEA=90°,BA=ED,利用AAS可证△ABC≌△DEA,于是AE=BC=300,再利用勾股定理可求AC,即可求CE,根据图可知从B到E的走法有两种,分别计算比较即可.【详解】解:如右图所示,∵BC∥AD,∴∠DAE=∠ACB,又∵BC⊥AB,DE⊥AC,∴∠ABC=∠DEA=90°,又∵AB=DE=400m,∴△ABC≌△DEA,∴EA=BC=300m,在Rt△ABC中,AC==500m,∴CE=AC-AE=200,从B到E有两种走法:①BA+AE=700m;②BC+CE=500m,∴最近的路程是500m.故选B.【点睛】本题考查了平行线的性质、全等三角形的判定和性质、勾股定理.解题的关键是证明△ABC≌△DEA,并能比较从B到E有两种走法.12.C解析:C【解析】试题解析:作点关于直线的对称点,连接并延长,与直线的交点即为使得取最大值时对应的点此时过点作于点如图,四边形为矩形,的最大值为:故答案为:13.B解析:B【分析】根据勾股定理的逆定理分别计算各个选项,选出正确的答案.【详解】A、,能组成直角三角形,故正确;B、,不能组成直角三角形,故错误;C、,能组成直角三角形,故正确;D、,能组成直角三角形,故正确;故选:B.【点睛】本题考查了勾股定理的逆定理:已知三角形ABC的三边满足a2+b2=c2,则三角形ABC是直角三角形.14.C解析:C【分析】根据勾股定理即可求出答案.【详解】解:∵∠ACB=90°,∴在RtABC中,m=AB==,故①②③正确,∵m2=13,9<13<16,∴3<m<4,故④错误,故选:C.【点睛】本题考查勾股定理及算术平方根、无理数的估算,解题的关键是熟练运用勾股定理,本题属于基础题型.15.C解析:C【解析】试题分析:根据题意得:=13,4×ab=13﹣1=12,即2ab=12,则==13+12=25,故选C.考点:勾股定理的证明;数学建模思想;构造法;等腰三角形与直角三角形.16.C解析:C【分析】记第三边为c,然后分c为直角三角形的斜边和直角边两种情况,利用勾股定理求解即可.【详解】解:记第三边为c,若c为直角三角形的斜边,则;若c为直角三角形的直角边,则.故选:C.【点睛】本题考查了勾股定理,属于基本题目,正确分类、熟练掌握勾股定理是解题的关键.17.C解析:C【分析】首先由勾股定理求得AB=10,然后由翻折的性质求得BE=4,设DC=,则BD=,在△BDE中,利用勾股定理列方程求解即可.【详解】在Rt△ABC中,由勾股定理可知:AB=,由折叠的性质可知:DC=DE,AC=AE=6,∠DEA=∠C=90°,∴BE=AB-AE=10-6=4,∠DEB=90°,设DC=x,则BD=8-x,DE=x,在Rt△BED中,由勾股定理得:BE2+DE2=BD2,即42+x2=(8-x)2,解得:x=3,∴CD=3.故选:C.【点睛】本题主要考查了勾股定理与折叠问题,熟练掌握翻折的性质和勾股定理是解决问题的关键.18.B解析:B【分析】根据翻折的性质可知:AC=AE=6,CD=DE,设CD=DE=x,在Rt△DEB中利用勾股定理解决.【详解】解:在Rt△ABC中,∵AC=6,BC=8,∴AB===10,△ADE是由△ACD翻折,∴AC=AE=6,EB=AB−AE=10−6=4,设CD=DE=x,在Rt△DEB中,∵,∴,∴x=3,∴CD=3.故答案为:B.【点睛】本题考查翻折的性质、勾股定理,利用翻折不变性是解决问题的关键,学会转化的思想去思考问题.19.D解析:D【分析】由(a-b)(a2-b2-c2)=0,可得:a-b=0,或a2-b2-c2=0,进而可得a=b或a2=b2+c2,进而判断△ABC的形状为等腰三角形或直角三角形.【详解】解:∵(a-b)(a2-b2-c2)=0,∴a-b=0,或a2-b2-c2=0,即a=b或a2=b2+c2,∴△ABC的形状为等腰三角形或直角三角形.故选:D.【点睛】本题考查了勾股定理的逆定理以及等腰三角形的判定,解题时注意:有两边相等的三角形是等腰三角形,满足a2+b2=c2的三角形是直角三角形.20.C解析:C【分析】过点D作DE⊥AB于点E,根据角平分线的性质定理,可得:DE=DC=x,则BE=-x,进而可得到AE=AC=7,在Rt△BDE中,应用勾股定理即可求解.【详解】过点D作DE⊥AB于点E,则∠AED=90°,AE=AC=7,∵△ABC是等腰直角三角形,∴BC=AC=7,AB=,在Rt△AED和Rt△ACD中,AE=AC,DE=DC,∴Rt△AED≌Rt△ACD,∴AE=AC=7,设DE=DC=x,则BD=7-x,在Rt△BDE中,,即:,解得:,故选:C.【点睛】本题考查角平分线的性质定理,全等三角形的判定与性质,勾股定理等,运用方程思想是解题的关键.21.D解析:D【分析】根据勾股定理求出AB的长,即为AC的长,再根据数轴上的点的表示解答.【详解】由勾股定理得,∴∵点A表示的数是1∴点C表示的数是故选D.【点睛】本题考查了勾股定理、实数与数轴,熟记定理并求出AB的长是解题的关键.22.C解析:C【分析】一个三角形中有一个直角,或三边满足勾股定理的逆定理则为直角三角形,否则则不是,据此依次分析各项即可.【详解】A.△ABC中,若∠B=∠C-∠A,则∠C=∠A+∠B,则△ABC是直角三角形,本选项正确;B.△ABC中,若a2=(b+c)(b-c),则a2=b2-c2,b2=a2+c2,则△ABC是直角三角形,本选项正确;C.△ABC中,若∠A∶∠B∶∠C=3∶4∶5,则∠,故本选项错误;D.△ABC中,若a∶b∶c=5∶4∶3,则△ABC是直角三角形,本选项正确;故选C.【点睛】本题考查的是直角三角形的判定,利用勾股定理的逆定理判断一个三角形是否是直角三角形的一般步骤:①确定三角形的最长边;②分别计算出最长边的平方与另两边的平方和;③比较最长边的平方与另两边的平方和是否相等.若相等,则此三角形是直角三角形;否则,就不是直角三角形.23.C解析:C【分析】利用勾股定理的逆定理可以推导出是直角三角形.再利用勾股定理求出AC,可得出AB=AC,即可判断.【详解】解:由已知可得CD=BD=5,即,是直角三角形,,故是等腰三角形.故选C【点睛】本题考查了勾股定理和它的逆定理,熟练掌握定理是解题关键.24.B解析:B【分析】根据直角三角形的意义和性质可以得到解答.【详解】解:由题意,∴,②正确;∵∠DBC=45°,DE⊥BC,∴∠EDB=∠DBC=45°,∴BE=DE∴,∴BH=CD=AB,③正确;∵,∴AB⊥CD,∴即,⑤正确,∵没有依据支持①④成立,∴②③⑤正确故选B.【点睛】本题考查直角三角形的意义和性质,灵活应用有关知识求解是解题关键.25.B解析:B【分析】首先根据题意得到BE=DE,然后根据勾股定理得到关于线段AB、AE、BE的方程,解方程即可解决问题.【详解】解:设ED=x,则AE=6-x,∵四边形ABCD为矩形,∴AD∥BC,∴∠EDB=∠DBC;由题意得:∠EBD=∠DBC,∴∠EDB=∠EBD,∴EB=ED=x;由勾股定理得:BE2=AB2+AE2,即x2=9+(6-x)2,解得:x=,∴ED=.故选:B.【点睛】本题主要考查了几何变换中的翻折变换及其应用问题;解题的关键是根据翻折变换的性质,结合全等三角形的判定及其性质、勾股定理等几何知识,灵活进行判断、分析、推理或解答.26.D解析:D【分析】先确定黑、白两个甲壳虫各爬行完第2017条棱分别停止的点,再根据停止点确定它们之间的距离.【详解】根据题意可知黑甲壳虫爬行一圈的路线是AA1→A1D1→D1C1→C1C→CB→BA,回到起点.乙甲壳虫爬行一圈的路线是AB→BB1→B1C1→C1D1→D1A1→A1A.因此可以判断两个甲壳虫爬行一圈都是6条棱,因为2017÷6=336…1,所以黑、白两个甲壳虫各爬行完第2017条棱分别停止的点都是A1,B.所以它们之间的距离是,故选D.【点睛】此题考查了立体图形的有关知识.注意找到规律:黑、白
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年中职美发与形象设计(发型修剪技术)试题及答案
- 2025年中职装配式建筑工程技术(建筑常识基础)试题及答案
- 2025-2026年高三地理(同步复习)下学期期中检测卷
- 2025年高职航空导航技术(航空导航基础)试题及答案
- 2025年高职(中药学)中药炮制工艺阶段测试题及评分标准
- 2025年大学药物分析(药物分析基础)试题及答案
- 第2部分 第10章 第3讲 服务业区位因素及其变化
- 2025年工作总结报告年终汇报及2026新年计划
- 深度解析(2026)GBT 18310.6-2001纤维光学互连器件和无源器件 基本试验和测量程序 第2-6部分试验 锁紧机构抗拉强度
- 深度解析(2026)《GBT 18114.1-2010稀土精矿化学分析方法 第1部分:稀土氧化物总量的测定 重量法》
- 2025至2030中国银导电胶行业市场深度研究与战略咨询分析报告
- 企业双重预防体系建设管理手册
- 即时零售行业发展报告2025-商务部x美团闪购-202511
- 膝关节韧带损伤的护理
- 动脉瘤破裂出血课件
- 银行内部控制合规性检查报告
- 2025年餐饮服务机器人市场分析现状
- 2025年卫生高级职称面审答辩(普通外科)副高面审经典试题及答案
- 2025-2026学年苏教版小学数学三年级上册期末综合测试卷及答案(三套)
- 精馏塔工艺流程图
- 全册教案-2025-2026学年度二年级上册音乐人音版
评论
0/150
提交评论